其他分享
首页 > 其他分享> > 并发库应用之五 & ReadWriteLock场景应用

并发库应用之五 & ReadWriteLock场景应用

作者:互联网

Lock比传统线程模型中的synchronized方式更加面向对象,与生活中的锁类似,锁本身也应该是一个对象。两个线程执行的代码片段要实现同步互斥的效果,它们必须用同一个Lock对象。

  读写锁:分为读锁和写锁,多个读锁不互斥,读锁与写锁互斥,这是由jvm自己控制的,我们只要上好相应的锁即可。如果你的代码只读数据,可以很多人同时读,但不能同时写,那就上读锁;如果你的代码修改数据,只能有一个人在写,且不能同时读取,那就上写锁。总之,读的时候上读锁,写的时候上写锁! 读写锁接口:ReadWriteLock,它的具体实现类为:ReentrantReadWriteLock        在多线程的环境下,对同一份数据进行读写,会涉及到线程安全的问题。比如在一个线程读取数据的时候,另外一个线程在写数据,而导致前后数据的不一致性;一个线程在写数据的时候,另一个线程也在写,同样也会导致线程前后看到的数据的不一致性。        这时候可以在读写方法中加入互斥锁,任何时候只能允许一个线程的一个读或写操作,而不允许其他线程的读或写操作,这样是可以解决这样以上的问题,但是效率却大打折扣了。因为在真实的业务场景中,一份数据,读取数据的操作次数通常高于写入数据的操作,而线程与线程间的读读操作是不涉及到线程安全的问题,没有必要加入互斥锁,只要在读-写,写-写期间上锁就行了。 对于以上这种情况,读写锁是最好的解决方案!其中它的实现类:ReentrantReadWriteLock--顾名思义是可重入的读写锁,允许多个读线程获得ReadLock,但只允许一个写线程获得WriteLock 读写锁的机制:    "读-读" 不互斥    "读-写" 互斥    "写-写" 互斥   ReentrantReadWriteLock会使用两把锁来解决问题,一个读锁,一个写锁。   线程进入读锁的前提条件:         1. 没有其他线程的写锁     2. 没有写请求,或者有写请求但调用线程和持有锁的线程是同一个线程   进入写锁的前提条件:     1. 没有其他线程的读锁     2. 没有其他线程的写锁   需要提前了解的概念:

  锁降级:从写锁变成读锁;

  锁升级:从读锁变成写锁。

  读锁是可以被多线程共享的,写锁是单线程独占的。也就是说写锁的并发限制比读锁高,这可能就是升级/降级名称的来源。

  如下代码会产生死锁,因为同一个线程中,在没有释放读锁的情况下,就去申请写锁,这属于锁升级,ReentrantReadWriteLock是不支持的。

ReadWriteLock rtLock = new ReentrantReadWriteLock();
 rtLock.readLock().lock();
 System.out.println("get readLock.");
 rtLock.writeLock().lock();
 System.out.println("blocking");

ReentrantReadWriteLock支持锁降级,如下代码不会产生死锁。

ReadWriteLock rtLock = new ReentrantReadWriteLock();
rtLock.writeLock().lock();
System.out.println("writeLock");

rtLock.readLock().lock();
System.out.println("get read lock");

以上这段代码虽然不会导致死锁,但没有正确的释放锁。从写锁降级成读锁,并不会自动释放当前线程获取的写锁,仍然需要显示的释放,否则别的线程永远也获取不到写锁。

  ============以下我会通过一个真实场景下的缓存机制来讲解 ReentrantReadWriteLock 实际应用============ 首先来看看ReentrantReadWriteLock的javaodoc文档中提供给我们的一个很好的Cache实例代码案例:
class CachedData {
  Object data;
  volatile boolean cacheValid;
  final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

  public void processCachedData() {
    rwl.readLock().lock();
    if (!cacheValid) {
      // Must release read lock before acquiring write lock
      rwl.readLock().unlock();
      rwl.writeLock().lock();
      try {
        // Recheck state because another thread might have,acquired write lock and changed state before we did.
        if (!cacheValid) {
          data = ...
          cacheValid = true;
        }
        // 在释放写锁之前通过获取读锁降级写锁(注意此时还没有释放写锁)
        rwl.readLock().lock();
      } finally {
        rwl.writeLock().unlock(); // 释放写锁而此时已经持有读锁
      }
    }

    try {
      use(data);
    } finally {
      rwl.readLock().unlock();
    }
  }
}

以上代码加锁的顺序为:

  1. rwl.readLock().lock();

  2. rwl.readLock().unlock();

  3. rwl.writeLock().lock();

  4. rwl.readLock().lock();

  5. rwl.writeLock().unlock();

  6. rwl.readLock().unlock();

以上过程整体讲解:

1. 多个线程同时访问该缓存对象时,都加上当前对象的读锁,之后其中某个线程优先查看data数据是否为空。【加锁顺序序号:1 】

2. 当前查看的线程发现没有值则释放读锁立即加上写锁,准备写入缓存数据。(不明白为什么释放读锁的话可以查看上面讲解进入写锁的前提条件)【加锁顺序序号:2和3 】

3. 为什么还会再次判断是否为空值(!cacheValid)是因为第二个、第三个线程获得读的权利时也是需要判断是否为空,否则会重复写入数据。

4. 写入数据后先进行读锁的降级后再释放写锁。【加锁顺序序号:4和5 】

5. 最后数据数据返回前释放最终的读锁。【加锁顺序序号:6 】

  如果不使用锁降级功能,如先释放写锁,然后获得读锁,在这个get过程中,可能会有其他线程竞争到写锁 或者是更新数据 则获得的数据是其他线程更新的数据,可能会造成数据的污染,即产生脏读的问题。

下面,让我们来实现真正趋于实际生产环境中的缓存案例:

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

public class CacheDemo {
    /**
     * 缓存器,这里假设需要存储1000左右个缓存对象,按照默认的负载因子0.75,则容量=750,大概估计每一个节点链表长度为5个
     * 那么数组长度大概为:150,又有雨设置map大小一般为2的指数,则最近的数字为:128
     */
    private Map<String, Object> map = new HashMap<>(128);
    private ReadWriteLock rwl = new ReentrantReadWriteLock();
    public static void main(String[] args) {

    }
    public Object get(String id){
        Object value = null;
        rwl.readLock().lock();//首先开启读锁,从缓存中去取
        try{
               if(map.get(id) == null){  //如果缓存中没有释放读锁,上写锁
                rwl.readLock().unlock();
                rwl.writeLock().lock();
                try{
                    if(value == null){ //防止多写线程重复查询赋值
                        value = "redis-value";  //此时可以去数据库中查找,这里简单的模拟一下
                    }
                    rwl.readLock().lock(); //加读锁降级写锁,不明白的可以查看上面锁降级的原理与保持读取数据原子性的讲解
                }finally{
                    rwl.writeLock().unlock(); //释放写锁
                }
            }
        }finally{
            rwl.readLock().unlock(); //最后释放读锁
        }
        return value;
    }
}

提示:读写锁之后有一个与它配合使用的有条件的阻塞,可以实现线程间的通信,它就是Condition。具体详情请查看我的博客:并发库应用之六 & 有条件阻塞Condition应用

标签:lock,写锁,ReadWriteLock,rwl,readLock,读锁,线程,应用,之五
来源: https://www.cnblogs.com/zhaoyan001/p/10769819.html