自己动手写一个神经网络
作者:互联网
import numpy as np def sigmod(x): return 1 / (1 + np.exp(-x)) def deriv_sigmod(x): fx = sigmod(x) return fx * (1 - fx) def mse_loss(y_true, y_pred): return ((y_true - y_pred)**2).mean() class OurNeuralNetwork: def __init__(self): #weights self.w1 = np.random.normal() self.w2 = np.random.normal() self.w3 = np.random.normal() self.w4 = np.random.normal() self.w5 = np.random.normal() self.w6 = np.random.normal() #biases self.b1 = np.random.normal() self.b2 = np.random.normal() self.b3 = np.random.normal() def feedforward(self,x): #x 是一个有两个元素的numpy数组 h1 = sigmod(self.w1 * x[0] + self.w2 * x[1] + self.b1) h2 = sigmod(self.w3 * x[0] + self.w4 * x[1] + self.b2) o1 = sigmod(self.w5 * h1 + self.w6 * h2 + self.b3) return o1 def train(self, data, all_y_trues): learn_rate = 0.1 epoches = 1000 for epoch in range(epoches): for x, y_true in zip(data, all_y_trues): sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1 h1 = sigmod(sum_h1) sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2 h2 = sigmod(sum_h2) sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3 o1 = sigmod(sum_o1) y_pred = o1 #开始计算偏导数 #命名规则 d_L_d_w1 代表 L对w1的偏导数 d_L_d_ypred = -2 * (y_true - y_pred) #Neuron o1 d_ypred_d_w5 = h1 * deriv_sigmod(sum_o1) d_ypred_d_w6 = h2 * deriv_sigmod(sum_o1) d_ypred_d_b3 = deriv_sigmod(sum_o1) d_ypred_d_h1 = self.w5 * deriv_sigmod(sum_o1) d_ypred_d_h2 = self.w6 * deriv_sigmod(sum_o1) #Neuron h1 d_h1_d_w1 = x[0] * deriv_sigmod(sum_h1) d_h1_d_w2 = x[1] * deriv_sigmod(sum_h1) d_h1_d_b1 = deriv_sigmod(sum_h1) #Neuron h2 d_h2_d_w3 = x[0] * deriv_sigmod(sum_h2) d_h2_d_w4 = x[1] * deriv_sigmod(sum_h2) d_h2_d_b2 = deriv_sigmod(sum_h2) #---------更新权重和偏置 #Neuron h1 self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1 self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2 self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1 #Neuron h2 self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3 self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w4 self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_b2 #Neuron o1 self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5 self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6 self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3 #每个epoch结束以后计算总的损失 if epoch % 10 == 0: y_preds = np.apply_along_axis(self.feedforward, 1, data) print (y_preds) loss = mse_loss(all_y_trues, y_preds) print ("Epoch %d loss: %.3f" % (epoch, loss)) data = np.array([ [-2, -1], [25, 6], [17, 4], [-15, -6] ]) all_y_trues = np.array([1, 0, 0, 1] ) #训练神经网络 network = OurNeuralNetwork() network.train(data, all_y_trues) emily = np.array([-7, -3]) frank = np.array([20, 2]) print ("Emily: %.3f" % network.feedforward(emily)) print ("Frank: %.3f" % network.feedforward(frank))
标签:ypred,sigmod,h2,self,h1,自己,动手,神经网络,sum 来源: https://www.cnblogs.com/cnugis/p/10685951.html