其他分享
首页 > 其他分享> > Codeforces 1715E - Long Way Home

Codeforces 1715E - Long Way Home

作者:互联网

又是废掉的一个div2啊

第一次在学校熬夜打cf,开心还看到了自己最喜欢的斜率优化ohhh

链接 :E - Long Way Home

看到那个平方就可以靠感觉认为是斜率优化了....

感觉似不似有点想法??k只有20...

可以试着去考虑最后一步用飞机,然后跑dijkstra求出走普通路径的。

其实就这样了...


考虑k=1的情况:

在最后坐飞机,前面都普通路径行走

则:\(d_{new}[i]=min(d_{old}[j]+(i-j)^2)\)

\(d_{new}\)为最后的答案,就是在最后坐飞机,\(d_{old}\)就是前面已经处理的走普通路径

然后跑一遍dijkstra,看看是否会更新(即假设存在A->C的最短路径为:A->B最后坐飞机,B->C走普通路径)


处理k>1的情况也是一样的,做k次dp,每一次在dp后跑最短路看能否用普通路径更新。

注意的是在一开始要跑一遍最短路,代表坐0次飞机的最短路径。

然后就是对于这个dp式子的处理了:

观察发现可以把式子转换为:\(d_{old}[j]+j^2=2ij+d_{new}[i]-i^2\)

斜率为\(2i\),X为\(j\),Y为\(d_{old}[j]+j^2\)。斜率和X都单调递增,所以可以画图发现决策点是下凸(为什么不转换式子要画图?因为j有特殊的点)

这个j特殊的点就在于没有范围的限制,也就是范围是(1<=j<=n)

所以就不可以在循环中加入单调队列

可以先一遍循环把所有决策点存入单调队列,然后再一遍循环更新答案

就完了....

对了!还有一个点:因为m可能小于n,图可能不连通,也就是说从只1号点跑dijkstra就不一定可以遍历完,所以就需要在dp时如果更新了\(d_{new}\)就要把它放入优先队列中,以保证每个点都可以更新到。

Over.

一定要在计算Y的时候把\(j^2\)开成long long啊!!!麻了,改了一个小时(ku)

总的复杂度\(O(k(mlogn+n))\)

代码:

#include<bits/stdc++.h>
#define ll long long 
using namespace std;
inline int read(){
    register int x = 0, t = 1;
    register char ch=getchar();
    while(ch<'0'||ch>'9'){
        if(ch=='-')
            t=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9'){
        x=(x<<1)+(x<<3)+(ch^48);
        ch=getchar();
    }
    return x*t;
}
struct node{
	int to,nxt,w;
}e[200010];
int head[100010],cnt,vis[100010];
void add(int u,int v,int w){
	e[++cnt].to=v;
	e[cnt].nxt=head[u];
	e[cnt].w=w;
	head[u]=cnt;
}
ll dist[100010],dis[110000]/*old*/;
struct h{
	int id;
	ll dis;
	bool operator<(const h &other)const{
		return dis>other.dis;
	}
};
priority_queue<h>qu;
void dijkstra(){//更新以普通边结尾 
	memset(vis,0,sizeof(vis));
	qu.push((h){1,0});
	while(!qu.empty()){
		int p=qu.top().id;
		qu.pop();
		if(vis[p])continue;
		vis[p]=1;
		for(int i=head[p];i;i=e[i].nxt){
			int v=e[i].to;
			if(dist[v]>dist[p]+e[i].w){
				dist[v]=dist[p]+e[i].w;
				qu.push((h){v,dist[v]});
			}
		}
	}
}
int q[100010],hd,tl;
ll Y(int i){return dis[i]+(ll)i*i;/*爆了!!*/}
ll X(int i){return i;}
ll K(int i){return 2*i;}
double slope(int x,int y){//x>y
	if(X(x)==X(y)){
		if(Y(x)<Y(y))return -1e18;
		else return 1e18;
	}
	return (double)(Y(x)-Y(y))/(X(x)-X(y));
}
int main(){
	int n=read(),m=read(),k=read();
	for(int i=1;i<=m;i++){
		int x=read(),y=read(),w=read();
		add(x,y,w),add(y,x,w);
	}
	for(int i=2;i<=n;i++)dist[i]=1e18;
	dijkstra();
	while(k--){
		for(int i=1;i<=n;i++)dis[i]=dist[i];
		hd=tl=0;
		for(int i=1;i<=n;i++){
			//下凸壳
			while(hd+1<tl&&slope(i,q[tl-1])<=slope(q[tl-1],q[tl-2]))tl--;
			q[tl++]=i;
		}
		for(int i=1;i<=n;i++){
			while(hd+1<tl&&slope(q[hd+1],q[hd])<=K(i))hd++;
			if(hd<tl){
				int j=q[hd];
				if(dist[i]>dis[j]+(ll)(j-i)*(j-i)){
					dist[i]=dis[j]+(ll)(j-i)*(j-i);
					qu.push((h){i,dist[i]});
				}
			}
		}
		dijkstra();
	}
	for(int i=1;i<=n;i++)printf("%lld ",dist[i]);
	return 0;
}

标签:ch,dist,int,ll,Codeforces,Long,dijkstra,Way,qu
来源: https://www.cnblogs.com/lefy959/p/16609952.html