CIFAR10自定义网络实战
作者:互联网
Tips:
人工智能难题不仅是计算机科学问题,更是数学、认知
科学和哲学问题。− François Chollet
代码
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics
from tensorflow import keras
def preprocess(x, y):
# [0, 255] --> [-1,1]
x = 2 * tf.cast(x, dtype=tf.float32) / 255. - 1.
y = tf.cast(y, dtype=tf.int32)
return x, y
batch_size = 128
# x --> [32,32,3], y --> [10k, 1]
(x, y), (x_val, y_val) = datasets.cifar10.load_data()
y = tf.squeeze(y) # [10k, 1] --> [10k]
y_val = tf.squeeze(y_val)
y = tf.one_hot(y, depth=10) # [50k, 10]
y_val = tf.one_hot(y_val, depth=10) # [10k, 10]
print('datasets:', x.shape, y.shape, x_val.shape, y_val.shape, x.min(),
x.max())
# 构建数据集
train_db = tf.data.Dataset.from_tensor_slices((x, y))
train_db = train_db.map(preprocess).shuffle(10000).batch(batch_size)
test_db = tf.data.Dataset.from_tensor_slices((x_val, y_val))
test_db = test_db.map(preprocess).batch(batch_size)
sample = next(iter(train_db))
print('batch:', sample[0].shape, sample[1].shape)
# 新建网络对象
class MyDense(layers.Layer):
# to replace standard layers.Dense()
def __init__(self, inp_dim, outp_dim):
super(MyDense, self).__init__()
self.kernel = self.add_weight('w', [inp_dim, outp_dim])
# self.bias = self.add_weight('b', [outp_dim])
def call(self, inputs, training=None):
x = inputs @ self.kernel
return x
# 自定义网络层
class MyNetwork(keras.Model):
def __init__(self):
super(MyNetwork, self).__init__()
self.fc1 = MyDense(32 * 32 * 3, 256)
self.fc2 = MyDense(256, 128)
self.fc3 = MyDense(128, 64)
self.fc4 = MyDense(64, 32)
self.fc5 = MyDense(32, 10)
def call(self, inputs, training=None):
"""inputs: [b,32,32,3]"""
x = tf.reshape(inputs, [-1, 32 * 32 * 3])
# [b,32*32*3] --> [b, 256]
x = self.fc1(x)
x = tf.nn.relu(x)
# [b, 256] --> [b,128]
x = self.fc2(x)
x = tf.nn.relu(x)
# [b, 128] --> [b,64]
x = self.fc3(x)
x = tf.nn.relu(x)
# [b, 64] --> [b,32]
x = self.fc4(x)
x = tf.nn.relu(x)
# [b, 32] --> [b,10]
x = self.fc5(x)
return x
network = MyNetwork()
# 装配
network.compile(optimizer=optimizers.Adam(lr=1e-3),
loss=tf.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
# 训练
network.fit(train_db, epochs=5, validation_data=test_db, validation_freq=1)
network.evaluate(test_db)
network.save_weights('ckpt/weights.ckpt') # 模型的保存
del network
print('saved to ckpt/weights.ckpt')
# 模型的加载
network = MyNetwork()
network.compile(optimizer=optimizers.Adam(lr=1e-3),
loss=tf.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
network.load_weights('ckpt/weights.ckpt')
print('loaded weights from file.')
network.evaluate(test_db)
标签:实战,val,自定义,CIFAR10,32,self,db,tf,network 来源: https://www.cnblogs.com/lanercifang/p/16574131.html