spark-调优(配置层面)
作者:互联网
spark-调优(配置层面)
1.executor的配置(重点)
--num-executors executor的数量
--executor-memory 每一个executor的内存
--executor-cores 每一个executor的核心数
--driver-memory Driver的内存1G-2G(保存广播变量)
--spark.storage.memoryFraction 用于缓存的内存占比默认时0.6,如果代码中没有用到缓存 可以将内存分配给shuffle
--spark.shuffle.memoryFraction 用户shuffle的内存占比默认0.2
总的内存=num-executors*executor-memory
总的核数=num-executors*executor-cores
配置的案例:
spark on yarn 资源设置标准
1、单个任务总的内存和总的核数一般做多在yarn总资源的1/3到1/2之间
比如公司集群有10太服务器
单台服务器内存是128G,核数是40
yarn总的内存=10*128G=1280G*0.8=960G 需要预留一般分内存给系统进程
yarn总的核数=40*10=400
提交单个spark任务资源上线
总的内存=960G *(1/3| 1/2) = 300G-500G
总的核数=400 * (1/3| 1/2) = 120 - 200
2、在上线内再按照需要处理的数据量来合理指定资源 -- 最理想的情况是一个task对应一个core
2.1、数据量比较小 - 10G
10G = 80个block = rdd80分区 = 80个task
- 最理想资源指定 -- 剩余资源充足
--num-executors=40
--executor-memory=4G
--executor-cores=2
- 资源里面最优的方式 -- 剩余资源不是很充足时
--num-executors=20
--executor-memory=4G
--executor-cores=2
2.2、数据量比较大时 - 80G
80G = 640block = 640分区 = 640task
- 最理想资源指定 -- 剩余资源充足, 如果剩余资源不够,还需要减少指定的资源
--num-executors=100
--executor-memory=4G
--executor-cores=2
1 *参数调优*
1.1 num-executors
*参数说明*:该参数用于设置Spark作业总共要用多少个Executor进程来执行。Driver在向YARN集群管理器申请资源时,YARN集群管理器会尽可能按照你的设置来在集群的各个工作节点上,启动相应数量的Executor进程。这个参数非常之重要,如果不设置的话,默认只会给你启动少量的Executor进程,此时你的Spark作业的运行速度是非常慢的。
*参数调优建议*:每个Spark作业的运行一般设置50~100个左右的Executor进程比较合适,设置太少或太多的Executor进程都不好。设置的太少,无法充分利用集群资源;设置的太多的话,大部分队列可能无法给予充分的资源。
1.2 executor-memory
*参数说明*:该参数用于设置每个Executor进程的内存。Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常,也有直接的关联。
*参数调优建议*:每个Executor进程的内存设置4G8G较为合适。但是这只是一个参考值,具体的设置还是得根据不同部门的资源队列来定。可以看看自己团队的资源队列的最大内存限制是多少,num-executors乘以executor-memory,就代表了你的Spark作业申请到的总内存量(也就是所有Executor进程的内存总和),这个量是不能超过队列的最大内存量的。此外,如果你是跟团队里其他人共享这个资源队列,那么申请的总内存量最好不要超过资源队列最大总内存的1/31/2,避免你自己的Spark作业占用了队列所有的资源,导致别的同学的作业无法运行。
1.3 executor-cores 可以用total-executor-cores总的核数
executor-cores = total-executor-cores / num-executors
*参数说明*:该参数用于设置每个Executor进程的CPU core数量。这个参数决定了每个Executor进程并行执行task线程的能力。因为每个CPU core同一时间只能执行一个task线程,因此每个Executor进程的CPU core数量越多,越能够快速地执行完分配给自己的所有task线程。
*参数调优建议*:Executor的CPU core数量设置为2~4个较为合适。同样得根据不同部门的资源队列来定,可以看看自己的资源队列的最大CPU core限制是多少,再依据设置的Executor数量,来决定每个Executor进程可以分配到几个CPU core。同样建议,如果是跟他人共享这个队列,那么num-executors * executor-cores不要超过队列总CPU core的1/3~1/2左右比较合适,也是避免影响其他同学的作业运行。
1.4 driver-memory
*参数说明*:该参数用于设置Driver进程的内存。
*参数调优建议*:Driver的内存通常来说不设置,或者设置1G左右应该就够了。唯一需要注意的一点是,如果需要使用collect算子将RDD的数据全部拉取到Driver上进行处理,那么必须确保Driver的内存足够大,否则会出现OOM内存溢出的问题。
1.5 spark.default.parallelism
*参数说明*:该参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。
*参数调优建议*:Spark作业的默认task数量为500~1000个较为合适。很多同学常犯的一个错误就是不去设置这个参数,那么此时就会导致Spark自己根据底层HDFS的block数量来设置task的数量,默认是一个HDFS block对应一个task。通常来说,Spark默认设置的数量是偏少的(比如就几十个task),如果task数量偏少的话,就会导致你前面设置好的Executor的参数都前功尽弃。试想一下,无论你的Executor进程有多少个,内存和CPU有多大,但是task只有1个或者10个,那么90%的Executor进程可能根本就没有task执行,也就是白白浪费了资源!因此Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍较为合适,比如Executor的总CPU core数量为300个,那么设置1000个task是可以的,此时可以充分地利用Spark集群的资源。
1.6 spark.storage.memoryFraction
*参数说明*:该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。也就是说,默认Executor 60%的内存,可以用来保存持久化的RDD数据。根据你选择的不同的持久化策略,如果内存不够时,可能数据就不会持久化,或者数据会写入磁盘。
*参数调优建议*:如果Spark作业中,有较多的RDD持久化操作,该参数的值可以适当提高一些,保证持久化的数据能够容纳在内存中。避免内存不够缓存所有的数据,导致数据只能写入磁盘中,降低了性能。但是如果Spark作业中的shuffle类操作比较多,而持久化操作比较少,那么这个参数的值适当降低一些比较合适。此外,如果发现作业由于频繁的gc导致运行缓慢(通过spark web ui可以观察到作业的gc耗时),意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。
1.7 spark.shuffle.memoryFraction
*参数说明*:该参数用于设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能。
*参数调优建议*:如果Spark作业中的RDD持久化操作较少,shuffle操作较多时,建议降低持久化操作的内存占比,提高shuffle操作的内存占比比例,避免shuffle过程中数据过多时内存不够用,必须溢写到磁盘上,降低了性能。此外,如果发现作业由于频繁的gc导致运行缓慢,意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。
资源参数的调优,没有一个固定的值,需要同学们根据自己的实际情况(包括Spark作业中的shuffle操作数量、RDD持久化操作数量以及spark web ui中显示的作业gc情况),同时参考本篇文章中给出的原理以及调优建议,合理地设置上述参数。
数据本地性
-- spark.locality.wait: spark task 再executor中执行前的等待时间 默认3秒
spark.yarn.executor.memoryOverhead : 堆外内存 默认等于堆内存的10%
spark.network.timeout spark网络链接的超时时间 默认120s
2.数据本地化级别
PROCESS_LOCAL
NODE_LOCA
NO_PREF
RACK_LOCAL
ANY
调优的模板
spark-submit
--master yarn-cluster
--num-executors = 50
--executor-memory = 4G
--executor-cores = 2
--driver-memory = 2G
--conf spark.storage.memoryFraction=0.4
--conf spark.shuffle.memoryFraction=0.4
--conf spark.locality.wait=10s
--conf spark.shuffle.file.buffer=64kb
--conf spark.yarn.executor.memoryOverhead=1024
--conf spark.network.timeout=200s
3.调节Executor堆外内存
标签:层面,--,Executor,调优,参数,内存,executor,spark 来源: https://www.cnblogs.com/atao-BigData/p/16503882.html