其他分享
首页 > 其他分享> > 深度学习实践6(RNN)

深度学习实践6(RNN)

作者:互联网

 import torch

batch_size = 1
seq_len = 3
input_size = 4
hidden_size = 2
num_layers = 1


#循环神经网络函数RNN
#(输入数据(数据的时间维度x的个数,batch,单个数据的维度),记忆体数据(层数(也即第几层的hidden),hidden的维度),层数)

cell = torch.nn.RNN(input_size=input_size, hidden_size=hidden_size,
num_layers=num_layers)

# (seqLen, batchSize, inputSize)
inputs = torch.randn(seq_len, batch_size, input_size)
hidden = torch.zeros(num_layers, batch_size, hidden_size)


## 输出数据:
## out:(seq_len,batch,hidden数据维度)--最上边的那一行,横着的,也就是输出
## hidden:(层数,batch,hidden数据维度)

out, hidden = cell(inputs, hidden)
print('Output size: ', out.shape)
print('Output: ', out)
print('Hidden size: ', hidden.shape)
print('Hidden: ', hidden)


结构图:

 

标签:RNN,torch,实践,batch,num,深度,维度,hidden,size
来源: https://www.cnblogs.com/zc-dn/p/16491274.html