HBase-day10 rowkey设计
作者:互联网
HBase中rowkey的设计(重点!!)
HBase的RowKey设计
HBase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这个三个维度可以对HBase中的数据进行快速定位。
HBase中rowkey可以唯一标识一行记录,在HBase查询的时候,有两种方式:
通过get方式,指定rowkey获取唯一一条记录
通过scan方式,设置startRow和stopRow参数进行范围匹配
全表扫描,即直接扫描整张表中所有行记录
rowkey长度原则
rowkey是一个二进制码流,可以是任意字符串,最大长度 64kb ,实际应用中一般为10-100bytes,以 byte[] 形式保存,一般设计成定长。
建议越短越好,不要超过16个字节,原因如下:
数据的持久化文件HFile中是按照KeyValue存储的,如果rowkey过长,比如超过100字节,1000w行数据,光rowkey就要占用100*1000w=10亿个字节,将近1G数据,这样会极大影响HFile的存储效率;
MemStore将缓存部分数据到内存,如果rowkey字段过长,内存的有效利用率就会降低,系统不能缓存更多的数据,这样会降低检索效率。
目前操作系统都是64位系统,内存8字节对齐,控制在16个字节,8字节的整数倍利用了操作系统的最佳特性。
rowkey散列原则
如果rowkey按照时间戳的方式递增,不要将时间放在二进制码的前面,建议将rowkey的高位作为散列字段,由程序随机生成,低位放时间字段,这样将提高数据均衡分布在每个RegionServer,以实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息,所有的数据都会集中在一个RegionServer上,这样在数据检索的时候负载会集中在个别的RegionServer上,造成热点问题,会降低查询效率。
rowkey唯一原则
必须在设计上保证其唯一性,rowkey是按照字典顺序排序存储的,因此,设计rowkey的时候,要充分利用这个排序的特点,将经常读取的数据存储到一块,将最近可能会被访问的数据放到一块。
什么是热点
HBase中的行是按照rowkey的字典顺序排序的,这种设计优化了scan操作,可以将相关的行以及会被一起读取的行存取在临近位置,便于scan。然而糟糕的rowkey设计是热点的源头。 热点发生在大量的client直接访问集群的一个或极少数个节点(访问可能是读,写或者其他操作)。大量访问会使热点region所在的单个机器超出自身承受能力,引起性能下降甚至region不可用,这也会影响同一个RegionServer上的其他region,由于主机无法服务其他region的请求。 设计良好的数据访问模式以使集群被充分,均衡的利用。
为了避免写热点,设计rowkey使得不同行在同一个region,但是在更多数据情况下,数据应该被写入集群的多个region,而不是一个。
下面是一些常见的避免热点的方法以及它们的优缺点:
加盐
这里所说的加盐不是密码学中的加盐,而是在rowkey的前面增加随机数,具体就是给rowkey分配一个随机前缀以使得它和之前的rowkey的开头不同。分配的前缀种类数量应该和你想使用数据分散到不同的region的数量一致。加盐之后的rowkey就会根据随机生成的前缀分散到各个region上,以避免热点。
哈希
哈希会使同一行永远用一个前缀加盐。哈希也可以使负载分散到整个集群,但是读却是可以预测的。使用确定的哈希可以让客户端重构完整的rowkey,可以使用get操作准确获取某一个行数据
反转
第三种防止热点的方法时反转固定长度或者数字格式的rowkey。这样可以使得rowkey中经常改变的部分(最没有意义的部分)放在前面。这样可以有效的随机rowkey,但是牺牲了rowkey的有序性。
反转rowkey的例子以手机号为rowkey,可以将手机号反转后的字符串作为rowkey,这样的就避免了以手机号那样比较固定开头导致热点问题
时间戳反转
一个常见的数据处理问题是快速获取数据的最近版本,使用反转的时间戳作为rowkey的一部分对这个问题十分有用,可以用 Long.Max_Value - timestamp 追加到key的末尾,例如 [key]reverse_timestamp , [key] 的最新值可以通过scan [key]获得[key]的第一条记录,因为HBase中rowkey是有序的,第一条记录是最后录入的数据。
比如需要保存一个用户的操作记录,按照操作时间倒序排序,在设计rowkey的时候,可以这样设计
[userId反转]Long.Max_Value - timestamp,在查询用户的所有操作记录数据的时候,直接指定反转后的userId,startRow是[userId反转]000000000000,stopRow是[userId反转]Long.Max_Value - timestamp
如果需要查询某段时间的操作记录,startRow是[user反转]Long.Max_Value - 起始时间,stopRow是[userId反转]Long.Max_Value - 结束时间
其他一些建议
尽量减少行和列的大小在HBase中,value永远和它的key一起传输的。当具体的值在系统间传输时,它的rowkey,列名,时间戳也会一起传输。如果你的rowkey和列名很大,甚至可以和具体的值相比较,那么你将会遇到一些有趣的问题。HBase storefiles中的索引(有助于随机访问)最终占据了HBase分配的大量内存,因为具体的值和它的key很大。可以增加block大小使得storefiles索引再更大的时间间隔增加,或者修改表的模式以减小rowkey和列名的大小。压缩也有助于更大的索引。
列族尽可能越短越好,最好是一个字符
冗长的属性名虽然可读性好,但是更短的属性名存储在HBase中会更好
# 原数据:以时间戳_user_id作为rowkey
# 时间戳高位变化不大,太连续,最终可能会导致热点问题
1638584124_user_id
1638584135_user_id
1638584146_user_id
1638584157_user_id
1638584168_user_id
1638584179_user_id
# 解决方案:加盐、反转、哈希
# 加盐
# 加上随即前缀,随机的打散
# 该过程无法预测 前缀时随机的
00_1638584124_user_id
05_1638584135_user_id
03_1638584146_user_id
04_1638584157_user_id
02_1638584168_user_id
06_1638584179_user_id
# 反转
# 适用于高位变化不大,低位变化大的rowkey
4214858361_user_id
5314858361_user_id
6414858361_user_id
7514858361_user_id
8614858361_user_id
9714858361_user_id
# 散列 md5、sha1、sha256......
25531D7065AE158AAB6FA53379523979_user_id
60F9A0072C0BD06C92D768DACF2DFDC3_user_id
D2EFD883A6C0198DA3AF4FD8F82DEB57_user_id
A9A4C265D61E0801D163927DE1299C79_user_id
3F41251355E092D7D8A50130441B58A5_user_id
5E6043C773DA4CF991B389D200B77379_user_id
# 时间戳"反转"
# rowkey:时间戳_user_id
# rowkey是字典升序的,那么越新的记录会被排在最后面,不容易被获取到
# 需求:让最新的记录排在最前面
# 大数:9999999999
# 大数-小数
1638584124_user_id => 8361415875_user_id
1638584135_user_id => 8361415864_user_id
1638584146_user_id => 8361415853_user_id
1638584157_user_id => 8361415842_user_id
1638584168_user_id => 8361415831_user_id
1638584179_user_id => 8361415820_user_id
1638586193_user_id => 8361413806_user_id
合理设计rowkey实战(电信)
手机号,网格编号,城市编号,区县编号,停留时间,进入时间,离开时间,时间分区
D55433A437AEC8D8D3DB2BCA56E9E64392A9D93C,117210031795040,83401,8340104,301,20180503190539,20180503233517,20180503
将用户位置数据保存到hbase
查询需求
1、通过手机号查询用户最近10条位置记录
2、获取用户某一天在一个城市中的所有位置
怎末设计hbase表
1、rowkey
2、时间戳
标签:反转,day10,user,key,rowkey,HBase,id 来源: https://www.cnblogs.com/f-1000/p/16463883.html