Akuna Capital 笔试第一题 字符串长度至少为k的最大回文子串的最大划分
作者:互联网
题目意思是给一个长度为n的字符串和一个整数k
定义合法的字符串为
1. 长度至少为k
2. 必须为回文串
问最大划分数量
比如 aababaabce 3
可以划分成 aababaa bce,答案为1
但是也能划分成 a aba baab ce,答案为2
这题有点搞头,主要是感觉怎么划分,其实是个很大的问题,输入数据在1e3左右,所以我们显然需要n方的算法来解决
本来想用奇技淫巧判断append一个字符之后字符串是否还是回文串,发现好像并不能,于是想起了字符串hash
然后刚开始想的是贪心的判断,但是贪心可能会造成样例走入情况1的误区,所以还是dp吧骚年
定义一个状态转移方程
dp[j] = max(dp[j] , dp[i] + 1)
然后我们要求的就是max dp
code:
#include <bits/stdc++.h> using namespace std; #define limit (1000000 + 5)//防止溢出 #define INF 0x3f3f3f3f #define inf 0x3f3f3f3f3f #define lowbit(i) i&(-i)//一步两步 #define EPS 1e-9 #define FASTIO ios::sync_with_stdio(false);cin.tie(0),cout.tie(0); #define ff(a) printf("%d\n",a ); #define pi(a, b) pair<a,b> #define rep(i, a, b) for(ll i = a; i <= b ; ++i) #define per(i, a, b) for(ll i = b ; i >= a ; --i) #define MOD 998244353 #define traverse(u) for(int i = head[u]; ~i ; i = edge[i].next) #define FOPEN freopen("C:\\Users\\tiany\\CLionProjects\\akioi\\data.txt", "rt", stdin) #define FOUT freopen("C:\\Users\\tiany\\CLionProjects\\akioi\\dabiao.txt", "wt", stdout) typedef long long ll; typedef unsigned long long ull; char buf[1 << 23], *p1 = buf, *p2 = buf, obuf[1 << 23], *O = obuf; inline ll read() { #define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++) ll sign = 1, x = 0; char s = getchar(); while (s > '9' || s < '0') { if (s == '-')sign = -1; s = getchar(); } while (s >= '0' && s <= '9') { x = (x << 3) + (x << 1) + s - '0'; s = getchar(); } return x * sign; #undef getchar }//快读 void print(ll x) { if (x / 10) print(x / 10); *O++ = x % 10 + '0'; } void write(ll x, char c = 't') { if (x < 0)putchar('-'), x = -x; print(x); if (!isalpha(c))*O++ = c; fwrite(obuf, O - obuf, 1, stdout); O = obuf; } const ll mod = 1e9 + 7; ll quickPow(ll base, ll expo) { ll ans = 1; while (expo) { if (expo & 1)(ans *= base) %= mod; expo >>= 1; base = base * base; base %= mod; } return ans % mod; } ll C(ll n, ll m) { if (n < m)return 0; ll x = 1, y = 1; if (m > n - m)m = n - m; rep(i, 0, m - 1) { x = x * (n - i) % mod; y = y * (i + 1) % mod; } return x * quickPow(y, mod - 2) % mod; } ll lucas(ll n, ll m) { return !m || n == m ? 1 : C(n % mod, m % mod) * lucas(n / mod, m / mod) % mod; } int n, m, k; ull h[limit], p[limit], rev_h[limit]; string str; ull hash_val(ull hs[] , int l, int r){ return hs[r] - hs[l - 1] * p[r - l + 1]; } bool is_palindrome(int l, int r){ return hash_val(h, l, r) == rev_h[l] - rev_h[r + 1] * p[r - l + 1]; } int dp[limit]; //记录一下在这个位置上及之后的最大数目,最后统计max dp, 每次更新选择max(dp[i] + 1, dp[start - 1] + 1) int end_with(int x){ rep(i,x, n){ if(is_palindrome(x, i) and i - x + 1 >= k){ return i + 1; } } return -1; } void solve() { cin>>str>>k; str = ' ' + str; n = str.length() - 1; p[0] = 1; int base = 233; rep(i,1,n){ h[i] = h[i - 1] * base + str[i]; p[i] = p[i - 1] * base; } per(i,1,n){ rev_h[i] = rev_h[i + 1] * base + str[i]; } int iter = 1; int ans = 0; dp[0] = 0; rep(i,1,n){ int next = end_with(i); if(next == -1){ continue; } rep(j, next, n + 1){ dp[j] = max(dp[j], dp[i] + 1); ans = max(dp[j], ans); } } cout<<ans<<endl; } int32_t main() { #ifdef LOCAL FOPEN; // FOUT; #endif FASTIO // int kase; // cin >> kase; // while (kase--) solve(); cerr << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << "s\n"; return 0; }
标签:return,int,ll,Capital,mod,Akuna,回文,dp,define 来源: https://www.cnblogs.com/tiany7/p/16460776.html