其他分享
首页 > 其他分享> > [AcWing 479] 加分二叉树

[AcWing 479] 加分二叉树

作者:互联网

image
image


点击查看代码
#include<iostream>
#include<cstring>

using namespace std;

typedef long long LL;

const int N = 50;

int n;
int w[N];
int f[N][N], g[N][N];

void dfs(int l, int r)
{
    if (l > r)
        return;
    int root = g[l][r];
    cout << root << ' ';
    dfs(l, root - 1);
    dfs(root + 1, r);
}

int main()
{
    cin >> n;
    for (int i = 1; i <= n; i ++)
        cin >> w[i];
    for (int len = 1; len <= n; len ++)
        for (int l = 1; l + len - 1 <= n; l ++) {
            int r = l + len - 1;
            if (len == 1) {
                f[l][r] = w[l];
                g[l][r] = l;
                continue;
            }
            for (int k = l; k <= r; k ++) {
                int left = k == l ? 1 : f[l][k - 1];
                int right = k == r ? 1 : f[k + 1][r];
                int score = left * right + w[k];
                if (f[l][r] < score) {
                    f[l][r] = score;
                    g[l][r] = k;
                }
            }
        }
    cout << f[1][n] << endl;
    dfs(1, n);
    return 0;
}

  1. 状态表示
    \(f[i][j]\) 表示将 \([l,r]\) 组成一棵树的最大分数
    \(g[i][j]\) 表示 \([l,r]\) 组成树的根节点
  2. 状态计算
    对于 \([l,r]\),枚举根节点的位置 \(k\)
    ① 若 \(k = l\),说明没有左子树,左子树的分数 \(left = 1\),右子树的分数 \(right = f[k + 1][r]\)
    ② 若 \(k = r\),说明没有右子树,右子树的分数 \(right = 1\),左子树的分数为 \(left = f[l][k - 1]\)
    ③ 若 $k \ \epsilon \ (l, r) $,说明有左子树和右子树,左子树的分数为 \(left = f[l][k - 1]\),右子树的分数 \(right = f[k + 1][r]\)
    根节点的分数为 \(w[k]\),总的分数为 \(score = left + right + w[k]\)
    当 \(score > f[l][r]\) 时,说明当前根节点的选法是更优的,更新 \(f[l][r] = score\),\(g[l][r] = k\)
  3. 输出方案
    \(dfs(1, n)\) ,每次递归处理左子树和右子树

标签:分数,左子,right,int,右子,二叉树,left,479,AcWing
来源: https://www.cnblogs.com/wKingYu/p/16456596.html