pandas :按另一列的值移动一列
作者:互联网
我们可以使用 numba
解决方案:
from numba import jit
@jit
def dyn_shift(s, step):
assert len(s) == len(step), "[s] and [step] should have the same length"
assert isinstance(s, np.ndarray), "[s] should have [numpy.ndarray] dtype"
assert isinstance(step, np.ndarray), "[step] should have [numpy.ndarray] dtype"
N = len(s)
res = np.empty(N, dtype=s.dtype)
for i in range(N):
res[i] = s[i-step[i]]
return res
结果:
In [302]: df['new'] = dyn_shift(df['a'].values, df['b'].values)
# NOTE: we should pass Numpy arrays: ^^^^^^^ ^^^^^^^
In [303]: df
Out[303]:
a b new
0 1 0 1
1 2 0 2
2 3 0 3
3 4 0 4
4 5 4 1
5 6 4 2
6 7 4 3
7 8 0 8
8 9 0 9
9 10 0 10
标签:df,dtype,should,step,一列,np,移动,pandas,ndarray 来源: https://www.cnblogs.com/yuyanc/p/16455841.html