2022各顶会NAS论文(不全)
作者:互联网
2022各顶会NAS论文(不全)
CVPR 2022
1.Shapley-NAS: Discovering Operation Contribution for Neural Architecture SearchShapley-NAS:发现对神经架构搜索的操作贡献
2.GreedyNASv2: Greedier Search with a Greedy Path FilterGreedyNASv2:使用贪心路径过滤器的贪心搜索
3.BaLeNAS: Differentiable Architecture Search via Bayesian Learning RuleBaLeNAS:通过贝叶斯学习规则进行可微架构搜索
4.ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image PriorISNAS-DIP:用于深度图像先验的图像特定神经架构搜索
5.Demystifying the Neural Tangent Kernel from a Practical Perspective: Can it be trusted for Neural Architecture Search without training?从实用的角度揭开神经切线内核的神秘面纱:无需训练就可以信任神经架构搜索吗?
6.SplitNets: Designing Neural Architectures for Efficient Distributed Computing on Head-Mounted SystemsSplitNets:为头戴式系统上的高效分布式计算设计神经架构
7.Neural Architecture Search with Representation Mutual Information具有表示互信息的神经架构搜索
8.Global Convergence of MAML and Theory-Inspired Neural Architecture Search for Few-Shot LearningMAML 的全局收敛和受理论启发的神经架构搜索以进行 Few-Shot 学习
9.Learning to Learn by Jointly Optimizing Neural Architecture and Weights通过联合优化神经架构和权重来学习学习
10.Shapley-NAS: Discovering Operation Contribution for Neural Architecture SearchShapley-NAS:发现对神经架构搜索的操作贡献
11.Distribution Consistent Neural Architecture Search分布一致的神经架构搜索
12.BaLeNAS: Differentiable Architecture Search via Bayesian Learning RuleBaLeNAS:通过贝叶斯学习规则进行可微架构搜索
13.Training-free Transformer Architecture Search免培训变压器架构搜索
14.ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image PriorISNAS-DIP:用于深度图像先验的图像特定神经架构搜索
15.Performance-Aware Mutual Knowledge Distillation for Improving Neural Architecture Search改进神经架构搜索的性能感知互知识蒸馏
16.Arch-Graph: Acyclic Architecture Relation Predictor for Task-Transferable Neural Architecture SearchArch-Graph:用于任务可转移神经架构搜索的非循环架构关系预测器
17.β-DARTS: Beta-Decay Regularization for Differentiable Architecture Searchβ-DARTS:可微架构搜索的 Beta-Decay 正则化
18.Searching the Deployable Convolution Neural Networks for GPUs
19.Lite Pose: Efficient Architecture Design for 2D Human Pose Estimation
20.DATA: Domain-Aware and Task-Aware Self-supervised Learning
AAAI 2022
1.DPNAS: Neural Architecture Search for Deep Learning with Differential Privacy
2.BM-NAS: Bilevel Multimodal Neural Architecture Search
3.Learning from Mistakes - A Framework for Neural Architecture Search
4.Learning Network Architecture for Open-Set Recognition
ICLR2022
1.NASPY: Automated Extraction of Automated Machine Learning Models
2.NAS-Bench-Suite: NAS Evaluation is (Now) Surprisingly Easy
3.NASI: Label- and Data-agnostic Neural Architecture Search at Initialization
4.Generalizing Few-Shot NAS with Gradient Matching
5.Surrogate NAS Benchmarks: Going Beyond the Limited Search Spaces of Tabular NAS Benchmarks
6.Learning Versatile Neural Architectures by Propagating Network Codes
7.On Redundancy and Diversity in Cell-based Neural Architecture Search
8.NASViT: Neural Architecture Search for Efficient Vision Transformers with Gradient Conflict aware Supernet Training
9.GradSign: Model Performance Inference with Theoretical Insights
10.SUMNAS: Supernet with Unbiased Meta-Features for Neural Architecture Search
ICML2022
1.AGNAS: Attention-Guided Unifying Micro- and Macro-Architecture Search
2.ShiftAddNAS: Hardware-Inspired Search for More Accurate and Efficient Neural Networks
3.MAE-DET: Revisiting Maximal Entropy Principle in Zero-Shot NAS for Efficient Object Detection
4.Deep and Flexible Graph Neural Architecture Search
5.Large-Scale Graph Neural Architecture Search
6.Graph Neural Architecture Search Under Distribution Shifts
7.Analyzing and Mitigating Interference in Neural Architecture Search
8.AutoSNN: Towards Energy-Efficient Spiking Neural Networks
IJCAI2022
1.Graph Masked Autoencoder Enhanced Predictor for Neural Architecture Search
2.Pruning-as-Search: Efficient Neural Architecture Search via Channel Pruning and Structural Reparameterization
标签:Search,架构,Neural,NAS,搜索,Architecture,2022,各顶会 来源: https://www.cnblogs.com/Zhengsh123/p/16452551.html