14_散列表
作者:互联网
14_散列表
散列思想
散列表的英文叫“hash table",平时也叫它”哈希表“或者”hash表“。
散列表用的是数组支持按照下标随机访问数据的特性,所以散列表其实就是数组的一种扩展,由数组演化而来。可以说,如果没有数组,就没有散列表。
示例:
假如我们有89名选手参加学校运动会。为了方便记录成绩,每个选手胸前都会贴上自己的参赛号码。这89名选手的编号依次是1到89。现在我们希望编程实现这样一个功能,通过编号快速找到对应的选手信息。你会怎么做呢?
我们可以把这89名选手的信息放在数组里。编号为1的选手,我们放到数组中下标为1的位置;编号为2的选手,我们放到数组中下标为2的位置。以此类推,编号为k的选手放到数组中下标为k的位置。
因为参赛编号跟数组下标一一对应,当我们需要查询参赛编号为x的选手的时候,我们只需要将下标为x的数组元素取出来就可以了,时间复杂度就是O(1)。
示例改造:
假设校长说,参赛编号不能设置得这么简单,要加上年级、班级这些更详细的信息,所以我们把编号的规则稍微修改了一下,用6位数字来表示。比如051167,其中,前两位05表示年级,中间两位11表示班级,最后两位还是原来的编号1到89。这个时候我们该如何存储选手信息,才能够支持通过编号来快速查找选手信息呢?
思路还是跟前面类似。尽管我们不能直接把编号作为数组下标,但我们可以截取参赛编号的后两位作为数组下标,来存取选手信息数据。当通过参赛编号查询选手信息的时候,我们用同样的方法,取参赛编号的后两位,作为数组下标,来读取数组中的数据。
这就是典型的散列思想:
参赛选手的编号叫做键(key)或者关键字,用这个键来标识一个选手。把参赛编号转化为数组下标的映射方法叫做散列函数(或hash函数)。通过散列函数计算得到的值叫做散列值(或hash值)。
总结:散列表用的就是数组支持按照下标随机访问的时候,时间复杂度是O(1)的特性。我们通过散列函数把元素的键值映射为下标,然后将数据存储在数组中对应下标的位置。当我们按照键值查询元素时,我们用同样的散列函数,将键值转化数组下标,从对应的数组下标的位置取数据。
散列函数
改造后示例伪代码:
int hash(String key) {
// 获取后两位字符
string lastTwoChars = key.substr(length-2, length);
// 将后两位字符转换为整数
int hashValue = convert lastTwoChas to int-type;
return hashValue;
}
刚刚举的学校运动会的例子,散列函数比较简单,也比较容易想到。但是,如果参赛选手的编号是随机生成的6位数字,又或者用的是a到z之间的字符串,该如何构造散列函数呢?我总结了三点散列函数设计的基本要求:
-
散列函数计算得到的散列值是一个非负整数;
-
如果key1 = key2,那hash(key1) == hash(key2);
-
如果key1 ≠ key2,那hash(key1) ≠ hash(key2)。
第三点实际是难实现的,即很多的哈希算法如MD5、SHA、CRC等,就算两个key不同,但是通过函数计算得到的值可能会相同,这就是散列冲突。而且,因为数组的存储空间有限,也会加大散列冲突的概率。
所以我们几乎无法找到一个完美的无冲突的散列函数,即便能找到,付出的时间成本、计算成本也是很大的,所以针对散列冲突问题,我们需要通过其他途径来解决。
解决散列冲突
-
开放寻址法
开放寻址法的核心思想是,如果出现了散列冲突,我们就重新探测一个空闲位置,将其插入。
当我们往散列表中插入数据时,如果某个数据经过散列函数散列之后,存储位置已经被占用了,我们就从当前位置开始,依次往后查找,看是否有空闲位置,直到找到为止。
查找元素: 通过散列函数求出要查找元素的键值对应的散列值,然后比较数组中下标为散列值的元素和要查找的元素。如果相等,则说明就是我们要找的元素;否则就顺序往后依次查找。如果遍历到数组中的空闲位置,还没有找到,就说明要查找的元素并没有在散列表中。
删除:
在查找的时候,一旦我们通过线性探测方法,找到一个空闲位置,我们就可以认定散列表中不存在这个数据。但是,如果这个空闲位置是我们后来删除的,就会导致原来的查找算法失效。本来存在的数据,会被认定为不存在。这个问题如何解决呢?
我们可以将删除的元素,特殊标记为deleted。当线性探测查找的时候,遇到标记为deleted的空间,并不是停下来,而是继续往下探测。
线性探测法其实存在很大问题。当散列表中插入的数据越来越多时,散列冲突发生的可能性就会越来越大,空闲位置会越来越少,线性探测的时间就会越来越久。极端情况下,我们可能需要探测整个散列表,所以最坏情况下的时间复杂度为O(n)。同理,在删除和查找时,也有可能会线性探测整张散列表,才能找到要查找或者删除的数据。
-
链表法(简单常用)
在散列表中,每个“桶(bucket)”或者“槽(slot)”会对应一条链表,所有散列值相同的元素我们都放到相同槽位对应的链表中。
当插入的时候,我们只需要通过散列函数计算出对应的散列槽位,将其插入到对应链表中即可,所以插入的时间复杂度是O(1)。当查找、删除一个元素时,我们同样通过散列函数计算出对应的槽,然后遍历链表查找或者删除。查找或删除操作的时间复杂度是O(k)。
问题思考
Word这种文本编辑器你平时应该经常用吧,那你有没有留意过它的拼写检查功能呢?一旦我们在Word里输入一个错误的英文单词,它就会用标红的方式提示“拼写错误”。Word的这个单词拼写检查功能,虽然很小但却非常实用。你有没有想过,这个功能是如何实现的呢?
解决:
常用的英文单词有20万个左右,假设单词的平均长度是10个字母,平均一个单词占用10个字节的内存空间,那20万英文单词大约占2MB的存储空间,就算放大10倍也就是20MB。对于现在的计算机来说,这个大小完全可以放在内存里面。所以我们可以用散列表来存储整个英文单词词典。
当用户输入某个英文单词时,我们拿用户输入的单词去散列表中查找。如果查到,则说明拼写正确;如果没有查到,则说明拼写可能有误,给予提示。借助散列表这种数据结构,我们就可以轻松实现快速判断是否存在拼写错误。
借助散列表实现LRU缓存淘汰算法
一个缓存(cache)系统主要包含下面这几个操作:
-
往缓存中添加一个数据;
-
从缓存中删除一个数据;
-
在缓存中查找一个数据。
这三个操作都要涉及“查找”操作,如果单纯地采用链表的话,时间复杂度只能是O(n)。如果我们将散列表和链表两种数据结构组合使用,可以将这三个操作的时间复杂度都降低到O(1)。
因为我们的散列表是通过链表法解决散列冲突的,所以每个结点会在两条链中。一个链是刚刚我们提到的双向链表,另一个链是散列表中的拉链。前驱和后继指针是为了将结点串在双向链表中,hnext指针是为了将结点串在散列表的拉链中。
Java LinkedHashMap
示例:
HashMap<Integer, Integer> m = new LinkedHashMap<>(10, 0.75f, true);
m.put(3, 11);
m.put(1, 12);
m.put(5, 23);
m.put(2, 22);
m.put(3, 26);
m.get(5);
for (Map.Entry e : m.entrySet()) {
System.out.println(e.getKey());
}
这段代码打印的结果是1,2,3,5。我来具体分析一下,为什么这段代码会按照这样顺序来打印。
每次调用put()函数,往LinkedHashMap中添加数据的时候,都会将数据添加到链表的尾部,所以,在前四个操作完成之后,链表中的数据是下面这样:
在第8行代码中,再次将键值为3的数据放入到LinkedHashMap的时候,会先查找这个键值是否已经有了,然后,再将已经存在的(3,11)删除,并且将新的(3,26)放到链表的尾部。所以,这个时候链表中的数据就是下面这样:
当第9行代码访问到key为5的数据的时候,我们将被访问到的数据移动到链表的尾部。所以,第9行代码之后,链表中的数据是下面这样:
LinkedHashMap是通过双向链表和散列表这两种数据结构组合实现的。LinkedHashMap中的“Linked”实际上是指的是双向链表,并非指用链表法解决散列冲突。
标签:下标,14,列表,链表,查找,数组,散列 来源: https://www.cnblogs.com/l12138h/p/16441578.html