OpenCV 可自动调整参数的透视变换
作者:互联网
OpenCV 可自动调整参数的透视变换:
在shiter大牛的基础之上,对于他的程序做了一定的修改。
首先,通过两个循环使得霍夫变换两个参数:角度的分辨率和点个数的阈值可以变换,这样就不必对于每一张图像都手动的设置阈值。
其次,过滤掉了两个距离很近的直线,使得能够正确找到物体的四个轮廓的直线。
#include #include #include #include #pragma comment(lib,"opencv_core2413d.lib") #pragma comment(lib,"opencv_highgui2413d.lib") #pragma comment(lib,"opencv_imgproc2413d.lib") cv::Point2f center(0,0); cv::Point2f computeIntersect(cv::Vec4i a, cv::Vec4i b) { int x1 = a[0], y1 = a[1], x2 = a[2], y2 = a[3], x3 = b[0], y3 = b[1], x4 = b[2], y4 = b[3]; float denom; if (float d = ((float)(x1 - x2) * (y3 - y4)) - ((y1 - y2) * (x3 - x4))) { cv::Point2f pt; pt.x = ((x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4)) / d; pt.y = ((x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4)) / d; return pt; } else return cv::Point2f(-1, -1); } //确定四个点的中心线 void sortCorners(std::vector& corners, cv::Point2f center) { std::vector top, bot; for (int i = 0; i < corners.size(); i++) { if (corners[i].y < center.y) top.push_back(corners[i]); else bot.push_back(corners[i]); } corners.clear(); if (top.size() == 2 && bot.size() == 2){ cv::Point2f tl = top[0].x > top[1].x ? top[1] : top[0]; cv::Point2f tr = top[0].x > top[1].x ? top[0] : top[1]; cv::Point2f bl = bot[0].x > bot[1].x ? bot[1] : bot[0]; cv::Point2f br = bot[0].x > bot[1].x ? bot[0] : bot[1]; corners.push_back(tl); corners.push_back(tr); corners.push_back(br); corners.push_back(bl); } } //计算直线端点的距离 bool Disserence(int a,int b) { if (a * a + b * b < 100) { return true; } else { return false; } } int main() { cv::Mat src = cv::imread("001.jpg"); if (src.empty()) return -1; cv::Mat bw; cv::cvtColor(src, bw, CV_BGR2GRAY); cv::blur(bw, bw, cv::Size(3, 3)); cv::Canny(bw, bw, 100, 100, 3); std::vector lines; std::vector corners; std::vector approx; int HoughThre = 20; int HoughTheta = 30; /* void HoughLinesP(InputArray image,OutputArray lines, double rho, double theta, int threshold, double minLineLength=0,double maxLineGap=0 ) image为输入图像,要求是8位单通道图像 lines为输出的直线向量,每条线用4个元素表示,即直线的两个端点的4个坐标值 rho和theta分别为距离和角度的分辨率 threshold为阈值,即步骤3中的阈值 minLineLength为最小直线长度,在步骤5中要用到,即如果小于该值,则不被认为是一条直线 maxLineGap为最大直线间隙,在步骤4中要用到,即如果有两条线段是在一条直线上,但它们之间因为有间隙,所以被认为是两个线段,如果这个间隙大于该值,则被认为是两条线段,否则是一条。 */ for(;HoughTheta <= 180;HoughTheta = HoughTheta + 30) { HoughThre = 30; for(;HoughThre < 300;HoughThre++) { lines.clear(); corners.clear(); approx.clear(); cv::HoughLinesP(bw, lines, 1, CV_PI/HoughTheta, HoughThre, 30, 50); //需要不断的变更霍夫变换的参数,才可以使得刚好找到四条直线,确定出边缘 // Expand the lines for (int i = 0; i < lines.size(); i++) { cv::Vec4i v = lines[i]; lines[i][0] = 0; lines[i][1] = ((float)v[1] - v[3]) / (v[0] - v[2]) * -v[0] + v[1]; lines[i][2] = src.cols; lines[i][3] = ((float)v[1] - v[3]) / (v[0] - v[2]) * (src.cols - v[2]) + v[3]; } //删除距离过近的两条直线 std::set ErasePt; for (int i = 0; i < lines.size(); i++) { for (int j = i + 1; j < lines.size(); j++) { if (Disserence(abs(lines[i][0] - lines[j][0]),abs(lines[i][1] - lines[j][1])) && (Disserence(abs(lines[i][2] - lines[j][2]),abs(lines[i][3] - lines[j][3])))) { ErasePt.insert(j); } } } // std::vector::iterator it = lines.end(); int Num = lines.size(); while (Num != 0) { std::set::iterator j = ErasePt.find(Num); if (j != ErasePt.end()) { lines.erase(lines.begin() + Num - 1); } Num--; } if (lines.size() != 4) { continue; } //计算直线的交点,保存在图像范围内的部分 for (int i = 0; i < lines.size(); i++) { for (int j = i+1; j < lines.size(); j++) { cv::Point2f pt = computeIntersect(lines[i], lines[j]); if (pt.x >= 0 && pt.y >= 0 && pt.x <= src.cols && pt.y <= src.rows) //保证交点在图像的范围之内 corners.push_back(pt); } } if (corners.size() != 4) { continue; } cv::approxPolyDP(cv::Mat(corners), approx, cv::arcLength(cv::Mat(corners), true) * 0.02, true); //if (approx.size() != 4) //{ // std::cout << "The object is not quadrilateral!" << std::endl; // return -1; //} if (lines.size() == 4 && corners.size() == 4 && approx.size() == 4) { break; } // std::cout<<"."; } std::cout< if (lines.size() == 4 && corners.size() == 4 && approx.size() == 4) break; if (HoughTheta == 180 && HoughThre >= 299) { return -1; } } cv::Mat dst = src.clone(); //for (int i = 0; i < lines.size(); i++) //{ // cv::Vec4i v = lines[i]; // cv::line(dst, cv::Point(v[0], v[1]), cv::Point(v[2], v[3]), CV_RGB(0,255,0)); //} //cvNamedWindow("image",0); //cv::imshow("image", dst); //cvWaitKey(); // Get mass center for (int i = 0; i < corners.size(); i++) center += corners[i]; center *= (1. / corners.size()); sortCorners(corners, center); if (corners.size() == 0){ std::cout << "The corners were not sorted correctly!" << std::endl; return -1; } // Draw lines for (int i = 0; i < lines.size(); i++) { cv::Vec4i v = lines[i]; cv::line(dst, cv::Point(v[0], v[1]), cv::Point(v[2], v[3]), CV_RGB(0,255,0)); } cvNamedWindow("image",0); cv::imshow("image", dst); cv::waitKey(); // Draw corner points cv::circle(dst, corners[0], 3, CV_RGB(255,0,0), 2); cv::circle(dst, corners[1], 3, CV_RGB(0,255,0), 2); cv::circle(dst, corners[2], 3, CV_RGB(0,0,255), 2); cv::circle(dst, corners[3], 3, CV_RGB(255,255,255), 2); // Draw mass center cv::circle(dst, center, 3, CV_RGB(255,255,0), 2); cv::Mat quad = cv::Mat::zeros(300, 220, CV_8UC3); std::vector quad_pts; quad_pts.push_back(cv::Point2f(0, 0)); quad_pts.push_back(cv::Point2f(quad.cols, 0)); quad_pts.push_back(cv::Point2f(quad.cols, quad.rows)); quad_pts.push_back(cv::Point2f(0, quad.rows)); cv::Mat transmtx = cv::getPerspectiveTransform(corners, quad_pts); cv::warpPerspective(src, quad, transmtx, quad.size()); cv::imshow("image", dst); cv::imshow("quadrilateral", quad); cv::waitKey(); return 0; }
转自:https://blog.51cto.com/u_13565704/5341151
标签:变换,corners,top,bot,Point2f,OpenCV,int,透视,cv 来源: https://www.cnblogs.com/Jack-Elvis/p/16397738.html