elasticsearch group by sum avg max min
作者:互联网
一:对单个字段进行分组求和
1、表结构图片:
根据任务id分组,分别统计出每个任务id下有多少个文字标题
- 1.SQL:select id, count(*) as sum from task group by taskid;
java ES连接工具类
- public class ESClientConnectionUtil {
- public static TransportClient client=null;
- public final static String HOST = "192.168.200.211"; //服务器部署
- public final static Integer PORT = 9301; //端口
- public static TransportClient getESClient(){
- System.setProperty("es.set.netty.runtime.available.processors", "false");
- if (client == null) {
- synchronized (ESClientConnectionUtil.class) {
- try {
- //设置集群名称
- Settings settings = Settings.builder().put("cluster.name", "es5").put("client.transport.sniff", true).build();
- //创建client
- client = new PreBuiltTransportClient(settings).addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName(HOST), PORT));
- } catch (Exception ex) {
- ex.printStackTrace();
- System.out.println(ex.getMessage());
- }
- }
- }
- return client;
- }
- public static TransportClient getESClientConnection(){
- if (client == null) {
- System.setProperty("es.set.netty.runtime.available.processors", "false");
- try {
- //设置集群名称
- Settings settings = Settings.builder().put("cluster.name", "es5").put("client.transport.sniff", true).build();
- //创建client
- client = new PreBuiltTransportClient(settings).addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName(HOST), PORT));
- } catch (Exception ex) {
- ex.printStackTrace();
- System.out.println(ex.getMessage());
- }
- }
- return client;
- }
- //判断索引是否存在
- public static boolean judgeIndex(String index){
- client= getESClientConnection();
- IndicesAdminClient adminClient;
- //查询索引是否存在
- adminClient= client.admin().indices();
- IndicesExistsRequest request = new IndicesExistsRequest(index);
- IndicesExistsResponse responses = adminClient.exists(request).actionGet();
- if (responses.isExists()) {
- return true;
- }
- return false;
- }
- }
java ES语句(根据单列进行分组求和)
- //根据 任务id分组进行求和
- SearchRequestBuilder sbuilder = client.prepareSearch("hottopic").setTypes("hot");
//根据taskid进行分组统计,统计出的列别名叫sum - TermsAggregationBuilder termsBuilder = AggregationBuilders.terms("sum").field("taskid");
- sbuilder.addAggregation(termsBuilder);
- SearchResponse responses= sbuilder.execute().actionGet();
- //得到这个分组的数据集合
- Terms terms = responses.getAggregations().get("sum");
- List<BsKnowledgeInfoDTO> lists = new ArrayList<>();
- for(int i=0;i<terms.getBuckets().size();i++){
- //statistics
- String id =terms.getBuckets().get(i).getKey().toString();//id
- Long sum =terms.getBuckets().get(i).getDocCount();//数量
- System.out.println("=="+terms.getBuckets().get(i).getDocCount()+"------"+terms.getBuckets().get(i).getKey());
- }
//分别打印出统计的数量和id值
根据多列进行分组求和
- //根据 任务id分组进行求和
- SearchRequestBuilder sbuilder = client.prepareSearch("hottopic").setTypes("hot");
- //根据taskid进行分组统计,统计出的列别名叫sum
- TermsAggregationBuilder termsBuilder = AggregationBuilders.terms("sum").field("taskid");
- //根据第二个字段进行分组
- TermsAggregationBuilder aAggregationBuilder2 = AggregationBuilders.terms("region_count").field("birthplace");
//如果存在第三个,以此类推; - sbuilder.addAggregation(termsBuilder.subAggregation(aAggregationBuilder2));
- SearchResponse responses= sbuilder.execute().actionGet();
- //得到这个分组的数据集合
- Terms terms = responses.getAggregations().get("sum");
- List<BsKnowledgeInfoDTO> lists = new ArrayList<>();
- for(int i=0;i<terms.getBuckets().size();i++){
- //statistics
- String id =terms.getBuckets().get(i).getKey().toString();//id
- Long sum =terms.getBuckets().get(i).getDocCount();//数量
- System.out.println("=="+terms.getBuckets().get(i).getDocCount()+"------"+terms.getBuckets().get(i).getKey());
- }
- //分别打印出统计的数量和id值
对多个field求max/min/sum/avg
- SearchRequestBuilder requestBuilder = client.prepareSearch("hottopic").setTypes("hot");
- //根据taskid进行分组统计,统计别名为sum
- TermsAggregationBuilder aggregationBuilder1 = AggregationBuilders.terms("sum").field("taskid")
//根据tasktatileid进行升序排列 - .order(Order.aggregation("tasktatileid", true));
// 求tasktitleid 进行求平均数 别名为avg_title - AggregationBuilder aggregationBuilder2 = AggregationBuilders.avg("avg_title").field("tasktitleid");
// - AggregationBuilder aggregationBuilder3 = AggregationBuilders.sum("sum_taskid").field("taskid");
- requestBuilder.addAggregation(aggregationBuilder1.subAggregation(aggregationBuilder2).subAggregation(aggregationBuilder3));
- SearchResponse response = requestBuilder.execute().actionGet();
- Terms aggregation = response.getAggregations().get("sum");
- Avg terms2 = null;
- Sum term3 = null;
- for (Terms.Bucket bucket : aggregation.getBuckets()) {
- terms2 = bucket.getAggregations().get("avg_title"); // org.elasticsearch.search.aggregations.metrics.avg.InternalAvg
- term3 = bucket.getAggregations().get("sum_taskid"); // org.elasticsearch.search.aggregations.metrics.sum.InternalSum
- System.out.println("编号=" + bucket.getKey() + ";平均=" + terms2.getValue() + ";总=" + term3.getValue());
- }
标签:group,min,max,sum,get,client,taskid,terms,id 来源: https://www.cnblogs.com/cfas/p/16377834.html