其他分享
首页 > 其他分享> > 18.06 矩阵

18.06 矩阵

作者:互联网

方程组

\[ \left\{ \begin{array}{rl} x + 2y + z = 2 \\ 3x + 8y + z = 12 4y + z = 2 \end{array} \right. \]

写成矩阵的形式可以改写为

\[ \begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1\\ 0 & 4 & 1 \\ \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ \end{bmatrix} = \begin{bmatrix} 2 \\ 12 \\ 2 \\ \end{bmatrix} \]

矩阵消元

模拟方程组的消元,矩阵的消元过程如下

\[ \begin{bmatrix} 1 & 2 & 1 & 2 \\ 3 & 8 & 1 & 12\\ 0 & 4 & 1 & 2 \\ \end{bmatrix} \to \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6\\ 0 & 4 & 1 & 2 \\ \end{bmatrix} \to \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6\\ 0 & 0 & 5 & -10 \\ \end{bmatrix} \]

然后进行回代,就可以解除方程组的解了。

从行的角度:C 中的每一行是 A 中每一行的线性组合

\[ \begin{bmatrix} a & b & c \\ \end{bmatrix} \begin{bmatrix} d & e & f \\ g & h & i\\ k & l & m \\ \end{bmatrix} = a \begin{bmatrix} d & e & f \\ \end{bmatrix} + b \begin{bmatrix} g & h & i\\ \end{bmatrix} + c \begin{bmatrix} k & l & m \\ \end{bmatrix} \]

从列的角度:C 中每一列是 B 中的每一列的线性组合

\[ \begin{bmatrix} d & e & f \\ g & h & i\\ k & l & m \\ \end{bmatrix} \begin{bmatrix} a & b & c \\ \end{bmatrix} = a \begin{bmatrix} d \\ e \\ f \\ \end{bmatrix} + b \begin{bmatrix} g \\ h \\ i\\ \end{bmatrix} + c \begin{bmatrix} k \\ l \\ m \\ \end{bmatrix} \]

矩阵乘法

\[ \begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n}\\ a_{21} & a_{22} & \ldots & a_{2n}\\ \vdots & \vdots & \vdots & \vdots\\ a_{m1} & a_{m2} & \ldots & a_{mn}\\ \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \ldots & b_{1p}\\ b_{21} & b_{22} & \ldots & b_{2p}\\ \vdots & \vdots & \vdots & \vdots\\ x_{n1} & x_{n2} & \ldots & x_{np}\\ \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \ldots & c_{1p}\\ c_{21} & c_{22} & \ldots & c_{2p}\\ \vdots & \vdots & \ddots & \vdots\\ c_{m1} & c_{m2} & \ldots & c_{mp}\\ \end{bmatrix} \]

假设上面的矩阵分别为 A, B, C,即 \(AB=C\),则我们可以采用如下的方法计算矩阵 C

方法一:(row i of A) (column j of B),即

\begin{equation}
\notag C_{ij} = \sum_{k=1}^{n}a_{ik}b_{kj}
\end{equation}

方法二:C 中的每一列,是 B 中每一列的线性组合,即

\[ \begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n}\\ a_{21} & a_{22} & \ldots & a_{2n}\\ \vdots & \vdots & \vdots & \vdots\\ a_{m1} & a_{m2} & \ldots & a_{mn}\\ \end{bmatrix} \begin{bmatrix} b_{11}\\ b_{21}\\ \vdots\\ x_{n1}\\ \end{bmatrix} = \begin{bmatrix} c_{11}\\ c_{21}\\ \vdots\\ c_{m1}\\ \end{bmatrix} \]

方法三:C 中的每一行,是 A 中每一行的线性组合

\[ \begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n}\\ \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \ldots & b_{1p}\\ b_{21} & b_{22} & \ldots & b_{2p}\\ \vdots & \vdots & \vdots & \vdots\\ x_{n1} & x_{n2} & \ldots & x_{np}\\ \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \ldots & c_{1p}\\ \end{bmatrix} \]

方法四:sum of (col of A)(row of B)

\[ \begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n}\\ a_{21} & a_{22} & \ldots & a_{2n}\\ \vdots & \vdots & \vdots & \vdots\\ a_{m1} & a_{m2} & \ldots & a_{mn}\\ \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \ldots & b_{1p}\\ b_{21} & b_{22} & \ldots & b_{2p}\\ \vdots & \vdots & \vdots & \vdots\\ x_{n1} & x_{n2} & \ldots & x_{np}\\ \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} & \ldots & a_{11}b_{1p} \\ a_{21}b_{11} & a_{21}b_{12} & \ldots & a_{21}b_{1p} \\ a_{31}b_{11} & a_{31}b_{12} & \ldots & a_{31}b_{1p} \\ a_{41}b_{11} & a_{41}b_{12} & \ldots & a_{41}b_{1p} \\ \end{bmatrix} + \ldots + \begin{bmatrix} a_{1n}b_{11} & a_{1n}b_{12} & \ldots & a_{1n}b_{1p} \\ a_{2n}b_{11} & a_{2n}b_{12} & \ldots & a_{2n}b_{1p} \\ a_{3n}b_{11} & a_{3n}b_{12} & \ldots & a_{3n}b_{1p} \\ a_{4n}b_{11} & a_{4n}b_{12} & \ldots & a_{4n}b_{1p} \\ \end{bmatrix} \]

标签:11,begin,end,矩阵,bmatrix,18.06,ldots,vdots
来源: https://www.cnblogs.com/crwen/p/16361433.html