其他分享
首页 > 其他分享> > 大数据技术之Flume 第3章 Flume进阶

大数据技术之Flume 第3章 Flume进阶

作者:互联网

第3章 Flume进阶

3.1 Flume事务

image-20220213050229161

3.2 Flume Agent内部原理

image-20220213050259680

重要组件:

1)ChannelSelector

ChannelSelector的作用就是选出Event将要被发往哪个Channel。其共有两种类型,分别是Replicating(复制)和Multiplexing(多路复用)。

ReplicatingSelector会将同一个Event发往所有的Channel,Multiplexing会根据相应的原则,将不同的Event发往不同的Channel。

2)SinkProcessor

SinkProcessor共有三种类型,分别是DefaultSinkProcessor、LoadBalancingSinkProcessor和FailoverSinkProcessor

DefaultSinkProcessor对应的是单个的Sink,LoadBalancingSinkProcessor和FailoverSinkProcessor对应的是Sink Group,LoadBalancingSinkProcessor可以实现负载均衡的功能,FailoverSinkProcessor可以错误恢复的功能。

3.3 Flume拓扑结构

3.3.1 简单串联

image-20220213050429267

这种模式是将多个flume顺序连接起来了,从最初的source开始到最终sink传送的目的存储系统。此模式不建议桥接过多的flume数量, flume数量过多不仅会影响传输速率,而且一旦传输过程中某个节点flume宕机,会影响整个传输系统。

3.3.2 复制和多路复用

image-20220213050521110

Flume支持将事件流向一个或者多个目的地。这种模式可以将相同数据复制到多个channel中,或者将不同数据分发到不同的channel中,sink可以选择传送到不同的目的地。

3.3.3 负载均衡和故障转移

image-20220213050559380

Flume支持使用将多个sink逻辑上分到一个sink组,sink组配合不同的SinkProcessor可以实现负载均衡和错误恢复的功能。

3.3.4 聚合

image-20220213050642471

这种模式是我们最常见的,也非常实用,日常web应用通常分布在上百个服务器,大者甚至上千个、上万个服务器。产生的日志,处理起来也非常麻烦。用flume的这种组合方式能很好的解决这一问题,每台服务器部署一个flume采集日志,传送到一个集中收集日志的flume,再由此flume上传到hdfs、hive、hbase等,进行日志分析。

3.4 Flume企业开发案例

3.4.1 复制和多路复用

1)案例需求

使用Flume-1监控文件变动,Flume-1将变动内容传递给Flume-2,Flume-2负责存储到HDFS。同时Flume-1将变动内容传递给Flume-3,Flume-3负责输出到Local FileSystem。

2)需求分析:

单数据源多出口复制channel

3)实现步骤:

(1)准备工作

在/opt/module/flume-1.9.0/job/目录下创建replicating文件夹

[wolffy@hadoop102 job]$ mkdir replicating

在/opt/module/flume-1.9.0/job/目录下创建file_roll文件夹

[wolffy@hadoop102 job]$ mkdir file_roll

(2)创建a1.conf

配置1个接收日志文件的source和两个channel、两个sink,分别输送给a2和a3。

编辑配置文件

[wolffy@hadoop102 group1]$ vim a1.conf

添加如下内容

# Name
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2

# source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /opt/module/hive-3.1.2/logs/hive.log

# sink1
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop102
a1.sinks.k1.port = 5555

# sink2
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hadoop102
a1.sinks.k2.port = 6666

# Channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Channel
a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100

# Channel Selector
a1.sources.r1.selector.type = replicating

# bind
a1.sources.r1.channels = c1 c2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c2

(3)创建a2.conf

配置上级Flume输出的Source,输出是到HDFS的Sink。

编辑配置文件

[wolffy@hadoop102 group1]$ vim a2.conf

添加如下内容

# Name
a2.sources = r1
a2.sinks = k1
a2.channels = c1

# source
a2.sources.r1.type = avro
a2.sources.r1.bind = hadoop102
a2.sources.r1.port = 5555


# sink
a2.sinks.k1.type = hdfs
a2.sinks.k1.hdfs.path = hdfs://hadoop102:9820/flume/%Y%m%d/%H
#上传文件的前缀
a2.sinks.k1.hdfs.filePrefix = logs-
#是否按照时间滚动文件夹
a2.sinks.k1.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k1.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k1.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k1.hdfs.useLocalTimeStamp = true
#积攒多少个Event才flush到HDFS一次
a2.sinks.k1.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a2.sinks.k1.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k1.hdfs.rollInterval = 30
#设置每个文件的滚动大小
a2.sinks.k1.hdfs.rollSize = 134217700
#文件的滚动与Event数量无关
a2.sinks.k1.hdfs.rollCount = 0


# Channel
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100

# bind
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

(4)创建a3.conf

配置上级Flume输出的Source,输出是到本地目录的Sink。

编辑配置文件

[wolffy@hadoop102 group1]$ vim flume-flume-dir.conf

添加如下内容

# Name
a3.sources = r1
a3.sinks = k1
a3.channels = c1

# source
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop102
a3.sources.r1.port = 6666

# sink
a3.sinks.k1.type = file_roll
a3.sinks.k1.sink.directory = /opt/module/flume-1.9.0/job/file_roll


# Channel
a3.channels.c1.type = memory
a3.channels.c1.capacity = 1000
a3.channels.c1.transactionCapacity = 100

# bind
a3.sources.r1.channels = c1
a3.sinks.k1.channel = c1

提示:输出的本地目录必须是已经存在的目录,如果该目录不存在,并不会创建新的目录。

(5)执行配置文件

分别启动对应的flume进程:a3.conf,a2.conf,a1.conf。

[wolffy@hadoop102 flume-1.9.0]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/replicating/a3.conf
[wolffy@hadoop102 flume-1.9.0]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/replicating/a2.conf
[wolffy@hadoop102 flume-1.9.0]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/replicating/a1.conf

(6)启动Hadoop和Hive

[wolffy@hadoop102 hadoop-2.7.2]$ sbin/start-dfs.sh
[wolffy@hadoop103 hadoop-2.7.2]$ sbin/start-yarn.sh
[wolffy@hadoop102 hive]$ bin/hive
hive (default)>

(7)检查HDFS上数据

image-20220213054715024

(8)检查/opt/module/datas/flume3目录中数据

[wolffy@hadoop102 flume3]$ ll
总用量 8
-rw-rw-r--. 1 wolffy wolffy 5942 5月 22 00:09 1526918887550-3

3.4.2 负载均衡和故障转移

1)案例需求

使用Flume1监控一个端口,其sink组中的sink分别对接Flume2和Flume3,采用FailoverSinkProcessor,实现故障转移的功能。

2)需求分析

负载均衡和故障转移

3)实现步骤

(1)准备工作

在/opt/module/flume-1.9.0/job/目录下创建failover文件夹

[wolffy@hadoop102 job]$ mkdir failover/
[wolffy@hadoop102 job]$ cd failover/

(2)创建a1.conf

配置1个netcat source和1个channel、1个sink group(2个sink),分别输送给a2.conf和a3.conf。

编辑配置文件

[wolffy@hadoop102 group2]$ vim a1.conf

添加如下内容

# Name
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1

# source
a1.sources.r1.type = netcat
a1.sources.r1.bind = hadoop102
a1.sources.r1.port = 4444
# sink1
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop102
a1.sinks.k1.port = 5555

# sink2
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hadoop102
a1.sinks.k2.port = 6666

# sink processor
a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinkgroups.g1.processor.type = failover
a1.sinkgroups.g1.processor.priority.k1 = 5
a1.sinkgroups.g1.processor.priority.k2 = 10
a1.sinkgroups.g1.processor.maxpenalty = 10000

# Channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# bind
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c1

(3)创建a2.conf

配置上级Flume输出的Source,输出是到本地控制台。

编辑配置文件

[wolffy@hadoop102 group2]$ vim a2.conf

添加如下内容

# Name
a2.sources = r1
a2.sinks = k1
a2.channels = c1

# source
a2.sources.r1.type = avro
a2.sources.r1.bind = hadoop102
a2.sources.r1.port = 5555

# sink
a2.sinks.k1.type = logger

# Channel
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100

# bind
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

(4)创建a3.conf

配置上级Flume输出的Source,输出是到本地控制台。

编辑配置文件

[wolffy@hadoop102 group2]$ vim a3.conf

添加如下内容

# Name
a3.sources = r1
a3.sinks = k1
a3.channels = c1

# source
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop102
a3.sources.r1.port = 6666

# sink
a3.sinks.k1.type = logger

# Channel
a3.channels.c1.type = memory
a3.channels.c1.capacity = 1000
a3.channels.c1.transactionCapacity = 100

# bind
a3.sources.r1.channels = c1
a3.sinks.k1.channel = c1

(5)执行配置文件

分别开启对应配置文件:a3.conf,a2.conf,a1.conf。

[wolffy@hadoop102 lume-1.9.0]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/failover/a3.conf -Dflume.wolffy.logger=INFO,console

[wolffy@hadoop102 flulume-1.9.0me]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/failover/a3.conf -Dflume.root.logger=INFO,console

[wolffy@hadoop102 lume-1.9.0]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/failover/a1.conf

(6)使用netcat工具向本机的44444端口发送内容

[wolffy@hadoop102 failover]$ nc hadoop102 4444

(7)查看Flume2及Flume3的控制台打印日志

(8)将Flume2 kill,观察Flume3的控制台打印情况。

 2022-02-13 06:40:14,235 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 68 65 6C 6C 6F                                  hello }

注:使用jps -ml查看Flume进程。

3.4.3 负载均衡

a1.conf

# Name
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1

# source
a1.sources.r1.type = netcat
a1.sources.r1.bind = hadoop102
a1.sources.r1.port = 4444
# sink1
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop102
a1.sinks.k1.port = 5555

# sink2
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hadoop102
a1.sinks.k2.port = 6666

# sink processor

a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinkgroups.g1.processor.type = load_balance
a1.sinkgroups.g1.processor.selector = round_robin
# 退避
a1.sinkgroups.g1.processor.backoff = true


# Channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100


# bind
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c1

a2.conf

# Name
a2.sources = r1
a2.sinks = k1
a2.channels = c1

# source
a2.sources.r1.type = avro
a2.sources.r1.bind = hadoop102
a2.sources.r1.port = 5555


# sink
a2.sinks.k1.type = logger

# Channel
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100

# bind
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

a3.conf

# Name
a3.sources = r1
a3.sinks = k1
a3.channels = c1

# source
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop102
a3.sources.r1.port = 6666


# sink
a3.sinks.k1.type = logger


# Channel
a3.channels.c1.type = memory
a3.channels.c1.capacity = 1000
a3.channels.c1.transactionCapacity = 100

# bind
a3.sources.r1.channels = c1
a3.sinks.k1.channel = c1

3.4.4 聚合

1)案例需求:

hadoop102上的Flume-1监控文件/opt/module/group.log,

hadoop103上的Flume-2监控某一个端口的数据流,

Flume-1与Flume-2将数据发送给hadoop104上的Flume-3,Flume-3将最终数据打印到控制台。

2)需求分析

聚合

3)实现步骤:

(1)准备工作

分发Flume

[wolffy@hadoop102 module]$ xsync flume-1.9.0

在hadoop102、hadoop103以及hadoop104的/opt/module/flume1.9.0/job目录下创建一个aggre文件夹。

[wolffy@hadoop102 job]$ mkdir aggre
[wolffy@hadoop103 job]$ mkdir aggre
[wolffy@hadoop104 job]$ mkdir aggre

(2)创建flume1-logger-flume.conf

配置Source用于监控hive.log文件,配置Sink输出数据到下一级Flume。

在hadoop102上编辑配置文件

[wolffy@hadoop102 group3]$ vim a1.conf 

添加如下内容

[wolffy@hadoop102 aggre]$ cat a1.txt 
# Name
a1.sources = r1
a1.sinks = k1 
a1.channels = c1

# source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /opt/module/hive-3.1.2/logs/hive.log

# sink1
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop104
a1.sinks.k1.port = 8888

# Channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# bind
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

(3)创建a2conf

配置Source监控端口44444数据流,配置Sink数据到下一级Flume:

在hadoop103上编辑配置文件

[wolffy@hadoop102 group3]$ vim a2.conf

添加如下内容

# Name
a2.sources = r1
a2.sinks = k1
a2.channels = c1

# source
a2.sources.r1.type = netcat
a2.sources.r1.bind = hadoop103
a2.sources.r1.port = 4444

# sink
a2.sinks.k1.type = avro
a2.sinks.k1.hostname = hadoop104
a2.sinks.k1.port = 8888

# Channel
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100

# bind
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

(4)创建flume3-flume-logger.conf

配置source用于接收flume1与flume2发送过来的数据流,最终合并后sink到控制台。

在hadoop104上编辑配置文件

[wolffy@hadoop104 group3]$ touch a3.conf
[wolffy@hadoop104 group3]$ vim a3.conf

添加如下内容

# Name
a3.sources = r1
a3.sinks = k1
a3.channels = c1

# source
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop104
a3.sources.r1.port = 8888

# sink
a3.sinks.k1.type = logger

# Channel
a3.channels.c1.type = memory
a3.channels.c1.capacity = 1000
a3.channels.c1.transactionCapacity = 100

# bind
a3.sources.r1.channels = c1
a3.sinks.k1.channel = c1

(5)执行配置文件

分别开启对应配置文件:a3.conf,a2.conf,a1.conf。

[root@hadoop104 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/aggre/a3.conf -Dflume.root.logger=INFO,console
[root@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/aggre/a1.conf
[root@hadoop103 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/aggre/a2.conf

(6)在hadoop102上向启动bin/hive

[root@hadoop102 hive-3.1.2]$ bin/hive
Hive Session ID = 1a14279f-53b3-47e9-9504-534fb461235f
Logging initialized using configuration in file:/opt/module/hive-3.1.2/conf/hive-log4j2.properties Async: true
Hive Session ID = a54853cc-e857-43ee-b305-dc644db44b84
hive (default)>

(7)在hadoop103上向4444端口发送数据

[root@hadoop103 flume]$ nc hadoop103 4444

(8)检查hadoop104上数据

2022-02-13 07:31:44,850 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 32 30 32 32 2D 30 32 2D 31 33 54 30 37 3A 33 31 2022-02-13T07:31 }
2022-02-13 07:31:44,850 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 32 30 32 32 2D 30 32 2D 31 33 54 30 37 3A 33 31 2022-02-13T07:31 }
2022-02-13 07:31:45,854 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 32 30 32 32 2D 30 32 2D 31 33 54 30 37 3A 33 31 2022-02-13T07:31 }                              hello }

3.5 自定义Interceptor

1)案例需求

使用Flume采集服务器本地日志,需要按照日志类型的不同,将不同种类的日志发往不同的分析系统。

2)需求分析

在实际的开发中,一台服务器产生的日志类型可能有很多种,不同类型的日志可能需要发送到不同的分析系统。此时会用到Flume拓扑结构中的Multiplexing结构,Multiplexing的原理是,根据event中Header的某个key的值,将不同的event发送到不同的Channel中,所以我们需要自定义一个Interceptor,为不同类型的event的Header中的key赋予不同的值。

在该案例中,我们以端口数据模拟日志,以数字(单个)和字母(单个)模拟不同类型的日志,我们需要自定义interceptor区分数字和字母,将其分别发往不同的分析系统(Channel)。

image-20220213091646549

3)实现步骤

(1)创建一个maven项目,并引入以下依赖。

<dependency>
   <groupId>org.apache.flume</groupId>
   <artifactId>flume-ng-core</artifactId>
   <version>1.9.0</version>
 </dependency>

(2)定义CustomInterceptor类并实现Interceptor接口。

package com.bdreasercher.bigdata;

import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;

import java.util.List;

public class CustomInterceptor implements Interceptor {
    @Override
    public void initialize() {

    }

    @Override
    public Event intercept(Event event) {
        byte[] body = event.getBody();
        if (body[0] < 'z' && body[0] > 'a') {
            event.getHeaders().put("type", "letter");
        } else if (body[0] > '0' && body[0] < '9') {
            event.getHeaders().put("type", "number");
        }
        return event;

    }

    @Override
    public List<Event> intercept(List<Event> events) {
        for (Event event : events) {
            intercept(event);
        }
        return events;

    }

    @Override
    public void close() {

    }

    public static class Builder implements Interceptor.Builder {

        @Override
        public Interceptor build() {
            return new CustomInterceptor();
        }

        @Override
        public void configure(Context context) {
        }
    }

}

打包,把编译好的Jar包房到lib文件夹下。

(3)编辑flume配置文件

为hadoop102上的Flume1配置1个netcat source,1个sink group(2个avro sink),并配置相应的ChannelSelector和interceptor。

# Name the components on this agent
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2

# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 44444

a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.bdreasercher.bigdata.CustomInterceptor$Builder
a1.sources.r1.selector.type = multiplexing
a1.sources.r1.selector.header = type
a1.sources.r1.selector.mapping.letter = c1
a1.sources.r1.selector.mapping.number = c2
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop103
a1.sinks.k1.port = 4141

a1.sinks.k2.type=avro
a1.sinks.k2.hostname = hadoop104
a1.sinks.k2.port = 4242

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Use a channel which buffers events in memory
a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100


# Bind the source and sink to the channel
a1.sources.r1.channels = c1 c2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c2

为hadoop103上的Flume4配置一个avro source和一个logger sink。

a1.sources = r1
a1.sinks = k1
a1.channels = c1

a1.sources.r1.type = avro
a1.sources.r1.bind = hadoop103
a1.sources.r1.port = 4141

a1.sinks.k1.type = logger


a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

a1.sinks.k1.channel = c1
a1.sources.r1.channels = c1

为hadoop104上的Flume3配置一个avro source和一个logger sink。

a1.sources = r1
a1.sinks = k1
a1.channels = c1

a1.sources.r1.type = avro
a1.sources.r1.bind = hadoop104
a1.sources.r1.port = 4242

a1.sinks.k1.type = logger

a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100


a1.sinks.k1.channel = c1
a1.sources.r1.channels = c1

(4)分别在hadoop102,hadoop103,hadoop104上启动flume进程,注意先后顺序。

(5)在hadoop102使用netcat向localhost:44444发送字母和数字。

(6)观察hadoop103和hadoop104打印的日志。

3.6 自定义Source

1)介绍

Source是负责接收数据到Flume Agent的组件。Source组件可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy。官方提供的source类型已经很多,但是有时候并不能满足实际开发当中的需求,此时我们就需要根据实际需求自定义某些source。

官方也提供了自定义source的接口:https://flume.apache.org/FlumeDeveloperGuide.html#source根据官方说明自定义MySource需要继承AbstractSource类并实现Configurable和PollableSource接口。

实现相应方法:

getBackOffSleepIncrement() //backoff 步长

getMaxBackOffSleepInterval()//backoff 最长时间

configure(Context context)//初始化context(读取配置文件内容)

process()//获取数据封装成event并写入channel,这个方法将被循环调用。

使用场景:读取MySQL数据或者其他文件系统。

2)需求

使用flume接收数据,并给每条数据添加前缀,输出到控制台。前缀可从flume配置文件中配置。

image-20220213091804669

image-20220213091823718

4)编码

(1)导入pom依赖

<dependencies>
    <dependency>
        <groupId>org.apache.flume</groupId>
        <artifactId>flume-ng-core</artifactId>
        <version>1.9.0</version>
</dependency>

(2)编写代码

package com.bdreasercher.bigdata;

import org.apache.flume.Context;
import org.apache.flume.EventDeliveryException;
import org.apache.flume.PollableSource;
import org.apache.flume.conf.Configurable;
import org.apache.flume.event.SimpleEvent;
import org.apache.flume.source.AbstractSource;

import java.util.HashMap;

public class MySource extends AbstractSource implements Configurable, PollableSource {

    //定义配置文件将来要读取的字段
    private Long delay;
    private String field;

    //初始化配置信息
    @Override
    public void configure(Context context) {
        delay = context.getLong("delay");
        field = context.getString("field", "Hello!");
    }

    @Override
    public Status process() throws EventDeliveryException {

        try {
            //创建事件头信息
            HashMap<String, String> hearderMap = new HashMap<>();
            //创建事件
            SimpleEvent event = new SimpleEvent();
            //循环封装事件
            for (int i = 0; i < 5; i++) {
                //给事件设置头信息
                event.setHeaders(hearderMap);
                //给事件设置内容
                event.setBody((field + i).getBytes());
                //将事件写入channel
                getChannelProcessor().processEvent(event);
                Thread.sleep(delay);
            }
        } catch (Exception e) {
            e.printStackTrace();
            return Status.BACKOFF;
        }
        return Status.READY;
    }

    @Override
    public long getBackOffSleepIncrement() {
        return 0;
    }

    @Override
    public long getMaxBackOffSleepInterval() {
        return 0;
    }
}

5)测试

(1)打包

将写好的代码打包,并放到flume的lib目录(/opt/module/flume-1.9.0/lib)下。

(2)配置文件

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = com.bdreasercher.bigdata.MySource
a1.sources.r1.delay = 1000
#a1.sources.r1.field = root

# Describe the sink
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

(3)开启任务

[root@hadoop102 flume-1.9.0]$ bin/flume-ng agent -c conf/ -f job/mysource.conf -n a1 -Dflume.root.logger=INFO,console

(4)结果展示

image-20220213204602544

3.7 自定义Sink

1)介绍

Sink不断地轮询Channel中的事件且批量地移除它们,并将这些事件批量写入到存储或索引系统、或者被发送到另一个Flume Agent。

Sink是完全事务性的。在从Channel批量删除数据之前,每个Sink用Channel启动一个事务。批量事件一旦成功写出到存储系统或下一个Flume Agent,Sink就利用Channel提交事务。事务一旦被提交,该Channel从自己的内部缓冲区删除事件。

Sink组件目的地包括hdfs、logger、avro、thrift、ipc、file、null、HBase、solr、自定义。官方提供的Sink类型已经很多,但是有时候并不能满足实际开发当中的需求,此时我们就需要根据实际需求自定义某些Sink。

官方也提供了自定义sink的接口:https://flume.apache.org/FlumeDeveloperGuide.html#sink根据官方说明自定义MySink需要继承AbstractSink类并实现Configurable接口。

实现相应方法:

configure(Context context)//初始化context(读取配置文件内容)

process()//从Channel读取获取数据(event),这个方法将被循环调用。

使用场景:读取Channel数据写入MySQL或者其他文件系统。

2)需求

使用flume接收数据,并在Sink端给每条数据添加前缀和后缀,输出到控制台。前后缀可在flume任务配置文件中配置。

流程分析:

image-20220213092122746

3)编码

package com.bdreasercher.bigdata;
import org.apache.flume.*;
import org.apache.flume.conf.Configurable;
import org.apache.flume.sink.AbstractSink;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class MySink extends AbstractSink implements Configurable {

    //创建Logger对象
    private static final Logger LOG = LoggerFactory.getLogger(AbstractSink.class);

    private String prefix;
    private String suffix;

    @Override
    public Status process() throws EventDeliveryException {

        //声明返回值状态信息
        Status status;

        //获取当前Sink绑定的Channel
        Channel ch = getChannel();

        //获取事务
        Transaction txn = ch.getTransaction();

        //声明事件
        Event event;

        //开启事务
        txn.begin();

        //读取Channel中的事件,直到读取到事件结束循环
        while (true) {
            event = ch.take();
            if (event != null) {
                break;
            }
        }
        try {
            //处理事件(打印)
            LOG.info(prefix + new String(event.getBody()) + suffix);

            //事务提交
            txn.commit();
            status = Status.READY;
        } catch (Exception e) {

            //遇到异常,事务回滚
            txn.rollback();
            status = Status.BACKOFF;
        } finally {

            //关闭事务
            txn.close();
        }
        return status;
    }

    @Override
    public void configure(Context context) {

        //读取配置文件内容,有默认值
        prefix = context.getString("prefix", "hello:");

        //读取配置文件内容,无默认值
        suffix = context.getString("suffix");
    }
}

4)测试

(1)打包

将写好的代码打包,并放到flume的lib目录(/opt/module/flume-1.9.0/lib)下。

(2)配置文件

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444

# Describe the sink
a1.sinks.k1.type = com.bdreasercher.bigdata.MySink
#a1.sinks.k1.prefix = root:
a1.sinks.k1.suffix = :root

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

(3)开启任务

[root@hadoop102 flume-1.9.0]$ bin/flume-ng agent -c conf/ -f job/mysink.conf -n a1 -Dflume.root.logger=INFO,console
[root@hadoop102 ~]$ nc localhost 44444
hello
OK
root
OK

(4)结果展示

3.8 Flume数据流监控

3.8.1 Ganglia的安装与部署

Ganglia由gmond、gmetad、gweb三部分组成。

1)安装ganglia

(1)规划

hadoop102:   web gmetad gmod 
hadoop103:   gmod
hadoop104:   gmod

(2)在102 103 104分别安装epel-release

[root@hadoop102 flume-1.9.0]$ sudo yum -y install epel-release
[root@hadoop103 flume-1.9.0]$ sudo yum -y install epel-release
[root@hadoop104 flume-1.9.0]$ sudo yum -y install epel-release

(3)在102 安装 web gmetad gmod

[root@hadoop102 flume-1.9.0]$ sudo yum -y install ganglia-gmetad 
[root@hadoop102 flume-1.9.0]$ sudo yum -y install ganglia-web
[root@hadoop102 flume-1.9.0]$ sudo yum -y install ganglia-gmond

(4)在103 和 104 安装 gmod

[root@hadoop103 flume-1.9.0]$ sudo yum -y install ganglia-gmond
[root@hadoop104 flume-1.9.0]$ sudo yum -y install ganglia-gmond

2)在102修改配置文件 /etc/httpd/conf.d/ganglia.conf

[root@hadoop102 flume-1.9.0]$ sudo vim /etc/httpd/conf.d/ganglia.conf

修改为红颜色的配置:

# Ganglia monitoring system php web frontend
Alias /ganglia /usr/share/ganglia
<Location /ganglia>
  # Require ip 10.1.2.3
  # Require host example.org
  Require all granted 
</Location>

5)在102修改配置文件/etc/ganglia/gmetad.conf

[root@hadoop102 flume-1.9.0]$ sudo vim /etc/ganglia/gmetad.conf

修改为:

data_source "my cluster" hadoop102

6)在102 103 104分别修改配置文件/etc/ganglia/gmond.conf

[root@hadoop102 flume-1.9.0]$ sudo vim /etc/ganglia/gmond.conf 

修改为:

cluster {
  name = "my cluster"
  owner = "unspecified"
  latlong = "unspecified"
  url = "unspecified"
}
udp_send_channel {
  #bind_hostname = yes # Highly recommended, soon to be default.
                       # This option tells gmond to use a source address
                       # that resolves to the machine's hostname.  Without
                       # this, the metrics may appear to come from any
                       # interface and the DNS names associated with
                       # those IPs will be used to create the RRDs.
  # mcast_join = 239.2.11.71
  # 数据发送给hadoop102
  host = hadoop102
  port = 8649
  ttl = 1
}
udp_recv_channel {
  # mcast_join = 239.2.11.71
  port = 8649
  # 接收来自任意连接的数据
  bind = 0.0.0.0
  retry_bind = true
  # Size of the UDP buffer. If you are handling lots of metrics you really
  # should bump it up to e.g. 10MB or even higher.
  # buffer = 10485760
}

7)在102修改配置文件 /etc/selinux/config

[root@hadoop102 flume-1.9.0]$ sudo vim /etc/selinux/config

修改为:

# This file controls the state of SELinux on the system.
# SELINUX= can take one of these three values:
#     enforcing - SELinux security policy is enforced.
#     permissive - SELinux prints warnings instead of enforcing.
#     disabled - No SELinux policy is loaded.
SELINUX=disabled
# SELINUXTYPE= can take one of these two values:
#     targeted - Targeted processes are protected,
#     mls - Multi Level Security protection.
SELINUXTYPE=targeted

尖叫提示:selinux本次生效关闭必须重启,如果此时不想重启,可以临时生效之:

[root@hadoop102 flume-1.9.0]$ sudo setenforce 0

8)启动ganglia

(1)在102 103 104 分别启动

[root@hadoop102 flume-1.9.0]$ sudo systemctl start gmond
[root@hadoop104 flume-1.9.0]$ sudo systemctl status gmond
● gmond.service - Ganglia Monitoring Daemon
   Loaded: loaded (/usr/lib/systemd/system/gmond.service; disabled; vendor preset: disabled)
   Active: active (running) since 二 2022-01-25 20:32:00 CST; 2 weeks 4 days ago
  Process: 43115 ExecStart=/usr/sbin/gmond (code=exited, status=0/SUCCESS)
 Main PID: 43116 (gmond)
   CGroup: /system.slice/gmond.service
           └─43116 /usr/sbin/gmond

1月 25 20:32:00 hadoop104 systemd[1]: Starting Ganglia Monitoring Daemon...
1月 25 20:32:00 hadoop104 systemd[1]: Started Ganglia Monitoring Daemon.

(2)在102 启动

[root@hadoop102 flume-1.9.0]$ sudo systemctl start httpd
[root@hadoop102 flume-1.9.0]$ sudo systemctl status httpd
● httpd.service - The Apache HTTP Server
   Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled; vendor preset: disabled)
   Active: active (running) since 二 2022-01-25 20:41:19 CST; 2 weeks 4 days ago
     Docs: man:httpd(8)
           man:apachectl(8)
  Process: 86976 ExecStop=/bin/kill -WINCH ${MAINPID} (code=exited, status=0/SUCCESS)
  Process: 3268 ExecReload=/usr/sbin/httpd $OPTIONS -k graceful (code=exited, status=0/SUCCESS)
 Main PID: 86981 (httpd)
   Status: "Total requests: 0; Current requests/sec: 0; Current traffic:   0 B/sec"
   CGroup: /system.slice/httpd.service
           ├─ 3273 /usr/sbin/httpd -DFOREGROUND
           ├─ 3274 /usr/sbin/httpd -DFOREGROUND
           ├─ 3275 /usr/sbin/httpd -DFOREGROUND
           ├─ 3276 /usr/sbin/httpd -DFOREGROUND
           ├─ 3277 /usr/sbin/httpd -DFOREGROUND
           └─86981 /usr/sbin/httpd -DFOREGROUND

[root@hadoop102 flume-1.9.0]$ sudo systemctl start gmetad
[root@hadoop102 flume-1.9.0]$ sudo systemctl status gmetad
● gmetad.service - Ganglia Meta Daemon
   Loaded: loaded (/usr/lib/systemd/system/gmetad.service; disabled; vendor preset: disabled)
   Active: active (running) since 二 2022-01-25 20:32:17 CST; 2 weeks 4 days ago
 Main PID: 86918 (gmetad)
   CGroup: /system.slice/gmetad.service
           └─86918 /usr/sbin/gmetad -d 1

9)打开网页浏览ganglia页面

http://hadoop102/ganglia

image-20220213175325374

尖叫提示:如果完成以上操作依然出现权限不足错误,请修改/var/lib/ganglia目录的权限。

[root@hadoop102 flume-1.9.0]$ sudo chmod -R 777 /var/lib/ganglia

参考:https://www.cnblogs.com/cosmos-wong/p/11980500.html

3.8.2 操作Flume测试监控

1)启动Flume任务

[root@hadoop102 flume-1.9.0]$ bin/flume-ng agent \
-c conf/ \
-n a1 \
-f job/netcat-flume-logger.conf \
-Dflume.root.logger=INFO,console \
-Dflume.monitoring.type=ganglia \
-Dflume.monitoring.hosts=hadoop102:8649

2)发送数据观察ganglia监测图

[root@hadoop102 flume-1.9.0]$ nc localhost 6666

样式如图:

image-20220213175934123

image-20220213180047298

图例说明:

字段(图表名称) 字段含义
EventPutAttemptCount source尝试写入channel的事件总数量
EventPutSuccessCount 成功写入channel且提交的事件总数量
EventTakeAttemptCount sink尝试从channel拉取事件的总数量。
EventTakeSuccessCount sink成功读取的事件的总数量
StartTime channel启动的时间(毫秒)
StopTime channel停止的时间(毫秒)
ChannelSize 目前channel中事件的总数量
ChannelFillPercentage channel占用百分比
ChannelCapacity channel的容量

IT学习网站

牛牛IT网站

Spring Cloud Alibaba学习资源推荐

Spring Cloud Alibaba 微服务架构实战
链接: https://pan.baidu.com/s/1nJpfbjPyf3n339INybjOQQ?pwd=8t11 提取码: 8t11
--来自百度网盘超级会员v4的分享
失效加V:x923713

标签:Flume,flume,进阶,a1,r1,c1,数据,channels,sinks
来源: https://www.cnblogs.com/niuniu2022/p/16350388.html