Flink sink 到 kafka,并行度与分区的关系
作者:互联网
Flink 版本: 1.15.0
问题
在社区看到以下问题:
请教个问题哈,sink 到 kafka,采用默认的分区器,是不是每个并行度都会与kafka的partition维护一个连接
比如 10 个并行度,3个 partition,那么维护的连接数总共为 10*3 个
? 是的
还是一个taskManager建立一个生产者 一个生产者对应多个分区
一个taskManager里面多个slot共享一个生产者? no
刚好想起,之前有个分析程序,用 FlinkKafkaProducer 写数据到 kafka,sink 只有一个并行度,sink 的 topic 有多个分区,数据永远只往 分区 0 发送数据
测试程序
来一个简单的测试程序:
- 读取 kafka 数据
- 来个 map 算子处理一下,在数据上加入当前的 subtask 的 index,标明数据是在哪个并行度处理的
- sink 数据到 kafka
- 写个简单的 java 消费者程序,讲数据的分区和数据内容输出
通过调整 flink 任务的并行度和 sink 的 topic 的分区数,测试以上问题
flink 程序
读取kafka,map算子给数据加上当前 subtask 数,标明数据是那个并行度的,最后 sink 到 kafka
object KafkaSinkTest {
val LOG = LoggerFactory.getLogger("KafkaSinkTest")
def main(args: Array[String]): Unit = {
val topic = "user_log"
val sinkTopic = "user_log_sink"
// env
val env = StreamExecutionEnvironment.getExecutionEnvironment
// global parllelism
val parallelism = 1
env.setParallelism(parallelism)
// kafka source
val kafkaSource = KafkaSource.builder[String]()
.setBootstrapServers(Common.BROKER_LIST)
.setTopics(topic)
.setGroupId("KafkaSinkTest")
.setStartingOffsets(OffsetsInitializer.latest())
.setValueOnlyDeserializer(new SimpleStringSchema())
.build();
// kafka sink
val kafkaSink = KafkaSink
.builder[String]()
.setBootstrapServers(bootstrapServer)
.setKafkaProducerConfig(Common.getProp)
.setRecordSerializer(KafkaRecordSerializationSchema.builder[String]()
.setTopic(sinkTopic)
// 不指定 key 的序列号器,key 会为 空
// .setKeySerializationSchema(new SimpleStringSchema())
.setValueSerializationSchema(new SimpleStringSchema())
.build()
)
.build()
// add source,读取数据
val sourceStream = env.fromSource(kafkaSource, WatermarkStrategy.noWatermarks(), "kafkaSource")
// map, add current subtask index
val mapStream = sourceStream
// rebalance data to all parallelisn
.rebalance
.flatMap(new RichFlatMapFunction[String, String] {
override def flatMap(element: String, out: Collector[String]): Unit = {
val parallelism = getRuntimeContext.getIndexOfThisSubtask
out.collect(parallelism + "," + element)
}
})
.name("flatMap")
.uid("flatMap")
// sink to kafka, new api
mapStream.sinkTo(kafkaSink)
// sink to kafka, old api
// val kafkaProducer = new FlinkKafkaProducer[String](bootstrapServer,sinkTopic, new SimpleStringSchema())
// mapStream.addSink(kafkaProducer)
// .setParallelism(parallelism)
env.execute("KafkaSinkTest")
}
任务流图如下:
消费者
打印从 kafka 消费出来的数据,并打印 数据在 topic 的分区编号
private static final String topic = "user_log_sink";
public static void main(String[] args) throws InterruptedException {
Properties prop = KafkaUtils.getProp();
KafkaConsumer kafkaConsumer = new KafkaConsumer(prop);
kafkaConsumer.subscribe(Arrays.asList(topic));
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
while (true) {
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(100);
String key;
String time;
String value = null;
for (ConsumerRecord<String, String> record : consumerRecords) {
value = record.value();
// 读取数据所在的分区
int partition = record.partition();
System.out.println( "partition: " +partition+ ", value : " + value);
}
Thread.sleep(5 * 1000);
}
}
场景测试
场景1: 1 个并行度 对 3 个分区
kakfa 消费结果:
partition: 2, value : 0,{"category_id":10,"user_id":"349","item_id":"10507","behavior":"buy","ts":"2022-05-28 15:34:51.774"}
partition: 0, value : 0,{"category_id":10,"user_id":"351","item_id":"10941","behavior":"buy","ts":"2022-05-28 15:34:53.774"}
partition: 1, value : 0,{"category_id":10,"user_id":"348","item_id":"10354","behavior":"buy","ts":"2022-05-28 15:34:50.774"}
结论: 数据一对一,一个并行度的数据往 3 个分区发
场景2: 3 个并行度 对 1 个分区
kakfa 消费结果:
partition: 0, value : 1,{"category_id":10,"user_id":"72","item_id":"10433","behavior":"buy","ts":"2022-05-27 14:19:02.437"}
partition: 0, value : 2,{"category_id":10,"user_id":"73","item_id":"1093","behavior":"buy","ts":"2022-05-27 14:19:03.437"}
partition: 0, value : 0,{"category_id":10,"user_id":"74","item_id":"10217","behavior":"buy","ts":"2022-05-27 14:19:04.437"}
结论: 数据多对一,多个并行度的数据往 1 个分区发
场景3: 3 个并行度 对 3 个分区
kakfa 消费结果:
partition: 0, value : 1,{"category_id":10,"user_id":"567","item_id":"10900","behavior":"buy","ts":"2022-05-27 14:27:17.437"}
partition: 2, value : 1,{"category_id":10,"user_id":"573","item_id":"10241","behavior":"buy","ts":"2022-05-27 14:27:23.437"}
partition: 1, value : 1,{"category_id":10,"user_id":"570","item_id":"10943","behavior":"buy","ts":"2022-05-27 14:27:20.437"}
partition: 0, value : 2,{"category_id":10,"user_id":"568","item_id":"1050","behavior":"buy","ts":"2022-05-27 14:27:18.437"}
partition: 1, value : 2,{"category_id":10,"user_id":"574","item_id":"1021","behavior":"buy","ts":"2022-05-27 14:27:24.437"}
partition: 1, value : 0,{"category_id":10,"user_id":"566","item_id":"1028","behavior":"buy","ts":"2022-05-27 14:27:16.437"}
partition: 2, value : 0,{"category_id":10,"user_id":"569","item_id":"10801","behavior":"buy","ts":"2022-05-27 14:27:19.437"}
partition: 0, value : 0,{"category_id":10,"user_id":"578","item_id":"10759","behavior":"buy","ts":"2022-05-27 14:27:28.437"}
结论: 数据多对多,多个并行度的数据往 3 个分区发
场景4: 2 个并行度 对 4 个分区
kakfa 消费结果:
partition: 0, value : 0,{"category_id":10,"user_id":"397","item_id":"10669","behavior":"buy","ts":"2022-05-28 15:35:39.774"}
partition: 2, value : 0,{"category_id":10,"user_id":"399","item_id":"10940","behavior":"buy","ts":"2022-05-28 15:35:41.774"}
partition: 1, value : 0,{"category_id":10,"user_id":"427","item_id":"1032","behavior":"buy","ts":"2022-05-28 15:36:09.774"}
partition: 2, value : 1,{"category_id":10,"user_id":"401","item_id":"10798","behavior":"buy","ts":"2022-05-28 15:35:43.774"}
partition: 0, value : 1,{"category_id":10,"user_id":"400","item_id":"10654","behavior":"buy","ts":"2022-05-28 15:35:42.774"}
partition: 1, value : 1,{"category_id":10,"user_id":"398","item_id":"10627","behavior":"buy","ts":"2022-05-28 15:35:40.774"}
结论: 数据多对多,多个并行度的数据往 3 个分区发
场景5: 2 个并行度 对 3 个分区
kakfa 消费结果:
partition: 2, value : 1,{"category_id":10,"user_id":"708","item_id":"10929","behavior":"buy","ts":"2022-05-27 14:29:38.437"}
partition: 0, value : 1,{"category_id":10,"user_id":"706","item_id":"10161","behavior":"buy","ts":"2022-05-27 14:29:36.437"}
partition: 2, value : 0,{"category_id":10,"user_id":"709","item_id":"10438","behavior":"buy","ts":"2022-05-27 14:29:39.437"}
partition: 0, value : 0,{"category_id":10,"user_id":"707","item_id":"10870","behavior":"buy","ts":"2022-05-27 14:29:37.437"}
partition: 1, value : 0,{"category_id":10,"user_id":"711","item_id":"10789","behavior":"buy","ts":"2022-05-27 14:29:41.437"}
结论: 数据一对多,一个并行度的数据往 3 个分区发
场景6: 4 个并行度 对 2 个分区
kakfa 消费结果:
partition: 0, value : 0,{"category_id":10,"user_id":"264","item_id":"10261","behavior":"buy","ts":"2022-05-27 14:22:14.437"}
partition: 1, value : 0,{"category_id":10,"user_id":"271","item_id":"10784","behavior":"buy","ts":"2022-05-27 14:22:21.437"}
partition: 1, value : 1,{"category_id":10,"user_id":"261","item_id":"10206","behavior":"buy","ts":"2022-05-27 14:22:11.437"}
partition: 0, value : 1,{"category_id":10,"user_id":"268","item_id":"10781","behavior":"buy","ts":"2022-05-27 14:22:18.437"}
partition: 1, value : 2,{"category_id":10,"user_id":"262","item_id":"10429","behavior":"buy","ts":"2022-05-27 14:22:12.437"}
partition: 0, value : 2,{"category_id":10,"user_id":"269","item_id":"10893","behavior":"buy","ts":"2022-05-27 14:22:19.437"}
partition: 1, value : 3,{"category_id":10,"user_id":"263","item_id":"10578","behavior":"buy","ts":"2022-05-27 14:22:13.437"}
partition: 0, value : 3,{"category_id":10,"user_id":"267","item_id":"10790","behavior":"buy","ts":"2022-05-27 14:22:17.437"}
结论: 数据多对多,多个并行度的数据往 2 个分区发
场景7: 3 个并行度 对 2 个分区
kakfa 消费结果:
partition: 0, value : 2,{"category_id":10,"user_id":"475","item_id":"10947","behavior":"buy","ts":"2022-05-27 14:25:45.437"}
partition: 1, value : 2,{"category_id":10,"user_id":"478","item_id":"10605","behavior":"buy","ts":"2022-05-27 14:25:48.437"}
partition: 1, value : 0,{"category_id":10,"user_id":"479","item_id":"10749","behavior":"buy","ts":"2022-05-27 14:25:49.437"}
partition: 0, value : 0,{"category_id":10,"user_id":"476","item_id":"10856","behavior":"buy","ts":"2022-05-27 14:25:46.437"}
partition: 0, value : 1,{"category_id":10,"user_id":"477","item_id":"10418","behavior":"buy","ts":"2022-05-27 14:25:47.437"}
partition: 1, value : 1,{"category_id":10,"user_id":"474","item_id":"1078","behavior":"buy","ts":"2022-05-27 14:25:44.437"}
结论: 数据多对多,多个并行度的数据往 2 个分区发
场景8: 老的 kafka api FlinkKafkaProducer 1 个并行度 对 3 个分区
kakfa 消费结果:
partition: 0, value : 0,{"category_id":10,"user_id":"520","item_id":"10207","behavior":"buy","ts":"2022-05-28 15:37:42.774"}
结论: 数据一对多,一个并行度的数据往 1 个分区发
场景9: 老的 kafka api FlinkKafkaProducer 2 个并行度 对 4 个分区
kakfa 消费结果:
partition: 0, value : 0,{"category_id":10,"user_id":"580","item_id":"10577","behavior":"buy","ts":"2022-05-28 15:38:42.774"}
partition: 1, value : 1,{"category_id":10,"user_id":"577","item_id":"10481","behavior":"buy","ts":"2022-05-28 15:38:39.774"}
结论: 数据一对多,一个并行度的数据只会往 1 个分区发,另外两个分区无数据
场景9: 老的 kafka api FlinkKafkaProducer 4 个并行度 对 2 个分区
kakfa 消费结果:
partition: 0, value : 2,{"category_id":10,"user_id":"785","item_id":"10883","behavior":"buy","ts":"2022-05-28 15:42:07.774"}
partition: 0, value : 0,{"category_id":10,"user_id":"787","item_id":"102","behavior":"buy","ts":"2022-05-28 15:42:09.774"}
partition: 1, value : 1,{"category_id":10,"user_id":"788","item_id":"10618","behavior":"buy","ts":"2022-05-28 15:42:10.774"}
partition: 1, value : 3,{"category_id":10,"user_id":"790","item_id":"10627","behavior":"buy","ts":"2022-05-28 15:42:12.774"}
结论: 数据多对一,一个并行度的数据只会往 1 个分区发
结论
KafkaSink api
随机策略,数据随机发往所有分区
Flink 的 kafka connector 并没有设置分区策略,直接使用的 kafka 客户端
Flink 中调用 kafka 生产者发送数据:
Flink 1.15.0 使用的 kafka-client 版本是 2.8.1 的默认设置: 随机选择一个和上一次不一样的分区
分区源码: StickyPartitionCache.nextPartition
public int nextPartition(String topic, Cluster cluster, int prevPartition) {
List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
Integer oldPart = indexCache.get(topic);
Integer newPart = oldPart;
// Check that the current sticky partition for the topic is either not set or that the partition that
// triggered the new batch matches the sticky partition that needs to be changed.
if (oldPart == null || oldPart == prevPartition) {
List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);
if (availablePartitions.size() < 1) {
Integer random = Utils.toPositive(ThreadLocalRandom.current().nextInt());
newPart = random % partitions.size();
} else if (availablePartitions.size() == 1) {
newPart = availablePartitions.get(0).partition();
} else {
while (newPart == null || newPart.equals(oldPart)) {
int random = Utils.toPositive(ThreadLocalRandom.current().nextInt());
newPart = availablePartitions.get(random % availablePartitions.size()).partition();
}
}
// Only change the sticky partition if it is null or prevPartition matches the current sticky partition.
if (oldPart == null) {
indexCache.putIfAbsent(topic, newPart);
} else {
indexCache.replace(topic, prevPartition, newPart);
}
return indexCache.get(topic);
}
return indexCache.get(topic);
}
注: 如果指定 key 的 序列化器,会将 数据用 指定的 序列化器序列化后生成 kafka 的 key
源码:
@Override
public ProducerRecord<byte[], byte[]> serialize(
IN element, KafkaSinkContext context, Long timestamp) {
final String targetTopic = topicSelector.apply(element);
final byte[] value = valueSerializationSchema.serialize(element);
byte[] key = null;
// key 的 序列化器,讲数据序列化为 key,实际就是 key 和 value 一样
if (keySerializationSchema != null) {
key = keySerializationSchema.serialize(element);
}
final OptionalInt partition =
partitioner != null
? OptionalInt.of(
partitioner.partition(
element,
key,
value,
targetTopic,
context.getPartitionsForTopic(targetTopic)))
: OptionalInt.empty();
return new ProducerRecord<>(
targetTopic,
partition.isPresent() ? partition.getAsInt() : null,
timestamp == null || timestamp < 0L ? null : timestamp,
key,
value);
}
注: 这样有个小问题,
FlinkKafkaProducer api
默认采用 sink 算子并行度 % kafka 分区数,所以每个并行度的数据永远都只会往一个 分区发
@Override
public int partition(T record, byte[] key, byte[] value, String targetTopic, int[] partitions) {
Preconditions.checkArgument(
partitions != null && partitions.length > 0,
"Partitions of the target topic is empty.");
return partitions[parallelInstanceId % partitions.length];
}
欢迎关注Flink菜鸟公众号,会不定期更新Flink(开发技术)相关的推文
标签:10,partition,Flink,ts,value,并行度,sink,id,user 来源: https://www.cnblogs.com/Springmoon-venn/p/16321022.html