【Matlab】新学知识及问题解决
作者:互联网
一、matlab 中函数“vision.x”的理解
MATLAB2012a及其更高版本中的Computer Vision System中的一大特点就是采用系统对象(System Object)进行编程,其提供了涉及视频显示、视频读写、特征检测、提取与匹配、目标检测、运动分析与跟踪、分析与增强、图像转换、滤波、几何变换、数学形态学操作、统计、添加文字和绘图、图像变换等方面。
采用系统对象进行编程的主要步骤包括:
1. 创建系统对象;
2. 修改系统对象属性;
3. 运行系统对象
(引用:原创:快速入门:MATLAB新功能:基于系统对象vision.X的图像... – MATLAB中文论坛 (ilovematlab.cn))
vision函数的matlab帮助(2021a)
Computer Vision Toolbox™ provides algorithms, functions, and apps for designing and testing computer vision, 3D vision, and video processing systems. You can perform object detection and tracking, as well as feature detection, extraction, and matching. You can automate calibration workflows for single, stereo, and fisheye cameras. For 3D vision, the toolbox supports visual and point cloud SLAM, stereo vision, structure from motion, and point cloud processing. Computer vision apps automate ground truth labeling and camera calibration workflows.
You can train custom object detectors using deep learning and machine learning algorithms such as YOLO v2, SSD, and ACF. For semantic and instance segmentation, you can use deep learning algorithms such as U-Net and Mask R-CNN. The toolbox provides object detection and segmentation algorithms for analyzing images that are too large to fit into memory. Pretrained models let you detect faces, pedestrians, and other common objects.
You can accelerate your algorithms by running them on multicore processors and GPUs. Toolbox algorithms support C/C++ code generation for integrating with existing code, desktop prototyping, and embedded vision system deployment.
(Computer Vision Toolbox™提供算法、功能和应用程序,用于设计和测试计算机视觉、3D视觉和视频处理系统。 您可以执行对象检测和跟踪,以及特征检测、提取和匹配。 您可以自动校准工作流程的单一,立体和鱼眼相机。 对于3D视觉,工具箱支持视觉和点云SLAM、立体视觉、运动结构和点云处理。 计算机视觉应用程序自动地面真实标签和相机校准工作流程。
您可以使用深度学习和机器学习算法(如YOLO v2、SSD和ACF)训练自定义对象检测器。 对于语义和实例分割,您可以使用深度学习算法,如U-Net和Mask R-CNN。 工具箱提供对象检测和分割算法,用于分析过大而无法放入内存的图像。 预先训练的模型可以让你检测人脸、行人和其他常见物体。
你可以通过在多核处理器和gpu上运行来加速你的算法。 工具箱算法支持C/ c++代码生成,以便与现有代码、桌面原型和嵌入式视觉系统部署集成。
翻译引用于:网易有道词典)
标签:对象,知识,算法,Computer,algorithms,Matlab,视觉,新学,vision 来源: https://www.cnblogs.com/ShuyaoDong/p/16288879.html