其他分享
首页 > 其他分享> > BST&平衡树 1

BST&平衡树 1

作者:互联网

BST

二叉查找树的定义:
一棵空树,或者是具有下列性质的二叉树:
(1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值;
(3)左、右子树也分别为二叉排序树;
从上述定义可以看出BST的性质:
BST中序遍历的序列权值递增

查找

按照定义,我们在这棵树上递归:
1.当前点权值等于查找值,返回当前权值
2.小于,左子树递归
3.大于,右子树递归

插入

如果查找出插入权值,在对应节点加一个“副本”
如果查找失败,必然到达当前树的某个叶节点
直接按定义新建叶节点即可

删除

在二叉排序树删去一个结点,分三种情况讨论:
若p结点为叶子结点,即PL(左子树)和PR(右子树)均为空树。由于删去叶子结点不破坏整棵树的结构,则可以直接删除此子结点。
若p结点只有左子树PL或右子树PR,此时只要令PL或PR直接成为其双亲结点f的左子树(当p是左子树)或右子树(当p是右子树)即可,作此修改也不破坏二叉排序树的特性。
若p结点的左子树和右子树均不空。在删去p之后,为保持其它元素之间的相对位置不变,可按中序遍历保持有序进行调整,可以有两种做法:其一是令p的左子树为f的左/右(依p是f的左子树还是右子树而定)子树,s为p左子树的最右下的结点,而p的右子树为s的右子树;其二是令p的直接前驱(或直接后继)替代p,然后再从二叉排序树中删去它的直接前驱(或直接后继)-即让f的左子树(如果有的话)成为p左子树的最左下结点(如果有的话),再让f成为p的左右结点的父结点。

前驱后继

前驱

若一个节点有左子树,那么该节点的前驱节点是其左子树中val值最大的节点(也就是左子树中所谓的rightMostNode)
若一个节点没有左子树,那么判断该节点和其父节点的关系
2.1 若该节点是其父节点的右边孩子,那么该节点的前驱结点即为其父节点。
2.2 若该节点是其父节点的左边孩子,那么需要沿着其父亲节点一直向树的顶端寻找,直到找到一个节点P,P节点是其父节点Q的右边孩子(可参考例子2的前驱结点是1),那么Q就是该节点的后继节点

后继

若一个节点有右子树,那么该节点的后继节点是其右子树中val值最小的节点(也就是右子树中所谓的leftMostNode)
若一个节点没有右子树,那么判断该节点和其父节点的关系
2.1 若该节点是其父节点的左边孩子,那么该节点的后继结点即为其父节点
2.2 若该节点是其父节点的右边孩子,那么需要沿着其父亲节点一直向树的顶端寻找,直到找到一个节点P,P节点是其父节点Q的左边孩子(可参考例子2的前驱结点是1),那么Q就是该节点的后继节点

标签:左子,结点,BST,右子,后继,其父,平衡,节点
来源: https://www.cnblogs.com/22222222STL/p/16313033.html