梯度下降就是沿着梯度所指引的方向,一步一步向下走,去寻找损失函数最小值的过程,然后我们就找到了接近正确的模型。
在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。
标签:函数,求解,梯度,什么,损失,下降,法来
来源: https://www.cnblogs.com/HOI-Yzy/p/16299739.html