其他分享
首页 > 其他分享> > 数模-拟合

数模-拟合

作者:互联网

image
image
image
image

其中直接将数据保存在MATLAB里面的操作是:

点击新建一个,命名为x

image

然后双击它,将excel里面的数据复制进去

image

image

同理y也是一样

image

然后点击保存

image

可以将两个变量都保存下来

image

image

image

image

image

image

image

image

image

总体代码

clear;clc
load  data1
plot(x,y,'o')
% 给x和y轴加上标签
xlabel('x的值')
ylabel('y的值')
n = size(x,1);
k = (n*sum(x.*y)-sum(x)*sum(y))/(n*sum(x.*x)-sum(x)*sum(x))
b = (sum(x.*x)*sum(y)-sum(x)*sum(x.*y))/(n*sum(x.*x)-sum(x)*sum(x))
hold on % 继续在之前的图形上来画图形
grid on % 显示网格线

% % 画出y=kx+b的函数图像 plot(x,y)
% % 传统的画法:模拟生成x和y的序列,比如要画出[0,5]上的图形
% xx = 2.5: 0.1 :7  % 间隔设置的越小画出来的图形越准确
% yy = k * xx + b  % k和b都是已知值
% plot(xx,yy,'-')

% 匿名函数的基本用法。
% handle = @(arglist) anonymous_function
% 其中handle为调用匿名函数时使用的名字。
% arglist为匿名函数的输入参数,可以是一个,也可以是多个,用逗号分隔。
% anonymous_function为匿名函数的表达式。
% 举个小例子
%  z=@(x,y) x^2+y^2; 
%  z(1,2) 
% % ans =  5
% fplot函数可用于画出匿名一元函数的图形。
% fplot(f,xinterval) 将匿名函数f在指定区间xinterval绘图。xinterval =  [xmin xmax] 表示定义域的范围

f=@(x) k*x+b;
fplot(f,[2.5,7]);
legend('样本数据','拟合函数','location','SouthEast')

y_hat = k*x+b; % y的拟合值
SSR = sum((y_hat-mean(y)).^2)  % 回归平方和
SSE = sum((y_hat-y).^2) % 误差平方和
SST = sum((y-mean(y)).^2) % 总体平方和
SST-SSE-SSR   % 5.6843e-14  =   5.6843*10^-14   matlab浮点数计算的一个误差
R_2 = SSR / SST

image

image

强大的曲线拟合工具箱

image

image

image

image

工具箱曲线拟合类型+评价解释

image
image
image

导出拟合结果

image

image

image

image

这样就可以导出啦

美国人口预测例题

image

根据PPT里面的公式进行拟合

image

会发现拟合出来的图像并不太好,需要调一下Fit Options

image

image

在图像导出的时候,可以调整他的分辨率,导出高清的图像

image

创建代码

image

image

image

拟合代码+预测代码

clear;clc
year = 1790:10:2000;
population = [3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0,92.0,106.5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4];
plot(year,population,'o')
cftool  % 拟合工具箱
% (1) X data 选择 year
% (2) Y data 选择 population
% (3) 拟合方式选择:Custom Equation (自定义方程)
% (4) 修改下方的方框为:x = f(t) = xm/(1+(xm/3.9-1)*exp(-r*(t-1790)))
% (5) 左边的result一栏最上面显示:Fit computation did not converge:即没有找到收敛解,右边的拟合图形也表明拟合结果不理想
% (6) 点击Fit Options,修改非线性最小二乘估计法拟合的初始值(StartPoint), r修改为0.02,xm修改为500 
% 有很多同学有疑惑,初始值为什么要这样设置?我们在未来学习微分方程模型和智能算法的课程时再来给大家介绍这里面蕴含的技巧。
% (7) 此时左边的result一览得到了拟合结果:r = 0.02735, xm = 342.4
% (8) 依次点击拟合工具箱的菜单栏最左边的文件—Generate Code(导出代码到时候可以放在你的论文附录),可以得到一个未命名的脚本文件
% (9) 在这个打开的脚本中按快捷键Ctrl+S,将这个文件保存到当前文件夹。
% (10) 在现在这个文件中调用这个函数得到参数的拟合值和预测的效果
[fitresult, gof] = createFit(year, population)
t = 2001:2030;
xm = 342.4;   
r =  0.02735;
predictions = xm./(1+(xm./3.9-1).*exp(-r.*(t-1790)));  % 计算预测值(注意这里要写成点乘和点除,这样可以保证按照对应元素进行计算)
figure(2)
plot(year,population,'o',t,predictions,'.')  % 绘制预测结果图

image

自己模拟数据进行演示

\

% (1)randi : 产生均匀分布的随机整数(i = int)  
%产生一个1至10之间的随机整数矩阵,大小为2x5;
s1 = randi(10,2,5)
%产生一个-5至5之间的随机整数矩阵,大小为1x10;
s2 = randi([-5,5],1,10)

%  (2) rand: 产生0至1之间均匀分布的随机数
%产生一个0至1之间的随机矩阵,大小为1x5;
s3 = rand(1,5)
%产生一个a至b之间的随机矩阵,大小为1x5;  % a + (b-a) * rand(1,5); 如:a,b = 2,5
s4= 2 + (5-2) * rand(1,5)

% (3)normrnd:产生正态分布的随机数
%产生一个均值为0,标准差(方差开根号)为2的正态分布的随机矩阵,大小为3x4;
s5 = normrnd(0,2,3,4)

% (4)roundn—任意位置四舍五入
% 0个位 1十位  2百位 -1小数点后一位  
a = 3.1415
roundn(a,-2)    % ans   =  3.1400
roundn(a,2)      % ans   =  0
a =31415
roundn(a,2)   % ans  = 31400
roundn(5.5,0)  %6
roundn(5.5,1) %10

image

clear;clc 
x = rand(30,1) * 10;  % x是0-10之间均匀分布的随机向量(30个样本)
y = 3 * exp(0.5*x) -5 + normrnd(0,1,30,1);
% cftool 

然后打开拟合工具箱

image

标签:roundn,10,函数,xm,sum,数模,拟合
来源: https://www.cnblogs.com/jgg54335/p/15139409.html