其他分享
首页 > 其他分享> > MKL库解线性最小二乘问题(LAPACKE_dgels)

MKL库解线性最小二乘问题(LAPACKE_dgels)

作者:互联网

LAPACK(Linear Algebra PACKage)库,是用Fortran语言编写的线性代数计算库,包含线性方程组求解(AX=B)、矩阵分解、矩阵求逆、求矩阵特征值、奇异值等。该库用BLAS库做底层运算。

本示例将使用MKL中的LAPACK库计算线性最小二乘问题的解,首先简单介绍最小二乘法原理:

引用自https://www.cnblogs.com/pinard/p/5976811.html

最小二乘法其形式如下式:

\[目标函数=\Sigma(观测值-理论值)^2 \]

观测值就是多组样本,理论值就是假设的拟合函数,目标函数也就是在机器学习中常说的损失函数,我们的目标是得到使损失函数最小化时的拟合函数的模型。

以最简单的线性回归为例,比如有\(m\)个样本,表示为\((x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\dots (x^{(m)},y^{(m)})\),每个样本都只有一个特征,那么可采用的拟合函数为\(h_{\theta}\left(x\right)=\theta_{0}+\theta_{1} x\),损失函数为

\[J\left( {{\theta _0},{\theta _1}} \right) = \sum\limits_{i = 1}^m {\left( {{y^{(i)}} - {h_\theta }\left( {{x^{(i)}}} \right)} \right)} = \sum\limits_{i = 1}^m {{{\left( {{y^{(i)}} - {\theta _0} - {\theta _1}{x^{(i)}}} \right)}^2}} \]

要使损失函数最小化,仅需去求满足\(\frac{\partial}{\partial \theta_0} J(\theta_0,\theta_1)=0,\frac{\partial}{\partial \theta_1} J(\theta_0,\theta_1)=0,\dots\)时的\(\theta_j\)即可。

接下来来到矩阵法求解

假设函数\(h_{\theta}\left(x_{1}, x_{2}, \ldots x_{n}\right)=\theta_{0}+\theta_{1} x_{1}+\ldots+\theta_{n-1} x_{n-1}\),为\(m \times 1\)的向量,其矩阵表达形式为:

\[h_{\theta}\left(x\right)=\boldsymbol {X}\theta \]

其中\(\theta\)为\(n \times 1\)的向量,\(\boldsymbol{X}\)为\(m \times n\)维的矩阵,其中\(m\)代表样本数,\(n\)代表特征数。则损失函数定义为:

\[J(\theta ) = \frac{1}{2}{({\boldsymbol{X}}\theta - {\boldsymbol{Y}})^T}({\boldsymbol{X}}\theta - {\boldsymbol{Y}}) \]

根据最小二乘法原理,损失函数对\(\theta\)求导,结果为:

\[\frac{\partial}{\partial \theta} J(\theta)=\boldsymbol{X}^{T}(\boldsymbol{X} \theta-\boldsymbol{Y})=0 \]

整理后得到

\[\theta=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{Y} \]

即只要有输入数据,无需求导也可完成对系数\(\theta\)的求解。

QR分解

实数矩阵的\(QR\)分解就是把矩阵\(A\)分解为一个正交矩阵\(Q\)和一个上三角矩阵\(R\):

即\(A=QR\),其中\(QQ^T=I\)。回到求解最小二乘的最优解\(\theta^*\):

\[\begin{array}{l} {\theta ^*} = {\left( {{{\bf{X}}^T}{\bf{X}}} \right)^{ - 1}}{{\bf{X}}^T}{\bf{Y}}\\ \Rightarrow {\left( {{{\bf{X}}^T}{\bf{X}}} \right)^{ - 1}}{\theta ^*} = {{\bf{X}}^T}{\bf{Y}}\\ \Rightarrow \left( {{{(QR)}^T}QR} \right){\theta ^*} = {(QR)^T}{\bf{Y}}\\ \Rightarrow \left( {{R^T}{Q^T}QR} \right){\theta ^*} = {R^T}{Q^T}{\bf{Y}}\\ \Rightarrow {R^T}R{\theta ^*} = {R^T}{Q^T}{\bf{Y}}\\ \Rightarrow R{\theta ^*} = {Q^T}{\bf{Y}}\\ \Rightarrow {\theta ^*} = {R^{ - 1}}{Q^T}{\bf{Y}} \end{array} \]

其中\(R\)为上三角矩阵,求逆相对容易,从而规避了直接对\({\left( {{{\bf{X}}^T}{\bf{X}}} \right)^{ - 1}}\)求逆的高复杂度问题。

MKL的LAPACK库中LAPACKE_?gels,采用\(QR\)分解完成最小二乘法求解这一过程。

1 参数详解

lapack_int LAPACKE_dgels( matrix_layout,		// 矩阵布局,行优先或列优先
                         trans, 			// 指定矩阵A的计算形式。"N":A,"T":A转置,"C":A共轭转置
                         m,				// 矩阵A的行
                         n, 				// 矩阵A的列
                         nrhs,				// 矩阵B的列
                         a,				// 矩阵A,在最小二乘问题中即为X矩阵
                         lda, 			        // A矩阵的第一维
                         b, 				// 矩阵B,在最小二乘问题中即为Y矩阵
                         ldb );				// B矩阵的第一维

2 定义∥Xθ-Y∥

#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h"

// 参数
#define M 6
#define N 4
#define NRHS 2
#define LDA N
#define LDB NRHS
MKL_INT m = M, n = N, nrhs = NRHS, lda = LDA, ldb = LDB, info;

double X[LDA*M] = {							// X矩阵
    1.44, -7.84, -4.39,  4.53,
    -9.96, -0.28, -3.24,  3.83,
    -7.55, 3.24, 6.27, -6.64,
    8.34, 8.09, 5.28,  2.06,
    7.08, 2.52, 0.74, -2.47,
    -5.45, -5.70, -1.19,  4.70
};
double y[LDB*M] = {							// y矩阵
    8.58, 9.35,
    8.26, -4.43,
    8.48, -0.70,
    -5.28, -0.26,
    5.72, -7.36,
    8.93, -2.52
};

3 执行求解

LAPACKE_dgels(LAPACK_ROW_MAJOR, 'N', m, n, nrhs, X, lda, y, ldb)

输出为:

完整代码

#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h"

//展示矩阵和向量
extern void print_matrix(const char* desc, MKL_INT m, MKL_INT n, double* a, MKL_INT lda);
extern void print_vector_norm(const char* desc, MKL_INT m, MKL_INT n, double* a, MKL_INT lda);

#define M 6
#define N 4
#define NRHS 2
#define LDA N
#define LDB NRHS

int main() {
    /* Locals */
    MKL_INT m = M, n = N, nrhs = NRHS, lda = LDA, ldb = LDB, info;
    /* Local arrays */
    double X[LDA * M] = {
        1.44, -7.84, -4.39,  4.53,
       -9.96, -0.28, -3.24,  3.83,
       -7.55, 3.24, 6.27, -6.64,
        8.34, 8.09, 5.28,  2.06,
        7.08, 2.52, 0.74, -2.47,
       -5.45, -5.70, -1.19,  4.70
    };
    double y[LDB * M] = {
        8.58, 9.35,
        8.26, -4.43,
        8.48, -0.70,
       -5.28, -0.26,
        5.72, -7.36,
        8.93, -2.52
    };

    printf("LAPACKE_dgels (row-major, high-level) Example Program Results\n");
    // 求解最小二乘
    info = LAPACKE_dgels(LAPACK_ROW_MAJOR, 'N', m, n, nrhs, X, lda, y, ldb);
    // 检查收敛
    if (info > 0) {
        printf("The diagonal element %i of the triangular factor ", info);
        printf("of A is zero, so that A does not have full rank;\n");
        printf("the least squares solution could not be computed.\n");
        exit(1);
    }
    // 打印
    print_matrix("Least squares solution", n, nrhs, y, ldb);

    print_vector_norm("Residual sum of squares for the solution", m - n, nrhs,
        &y[n * ldb], ldb);

    print_matrix("Details of QR factorization", m, n, X, lda);
    exit(0);
}

// 展示矩阵、向量
void print_matrix(const char* desc, MKL_INT m, MKL_INT n, double* a, MKL_INT lda) {
    MKL_INT i, j;
    printf("\n %s\n", desc);
    for (i = 0; i < m; i++) {
        for (j = 0; j < n; j++) printf(" %6.2f", a[i * lda + j]);
        printf("\n");
    }
}

void print_vector_norm(const char* desc, MKL_INT m, MKL_INT n, double* a, MKL_INT lda) {
    MKL_INT i, j;
    double norm;
    printf("\n %s\n", desc);
    for (j = 0; j < n; j++) {
        norm = 0.0;
        for (i = 0; i < m; i++) norm += a[i * lda + j] * a[i * lda + j];
        printf(" %6.2f", norm);
    }
    printf("\n");
}

标签:bf,LAPACKE,MKL,矩阵,lda,INT,dgels,theta
来源: https://www.cnblogs.com/GeophysicsWorker/p/16185793.html