LeetCode 0072 Edit Distance
作者:互联网
1. 题目描述
2. Solution 1
1、思路分析
1> 定义: dp[i][j] = s1[i] 与 s2[j] 之间的距离 dim(dp) = (m, n)
2> 边界,是转换一个string到空string,使用删除,所以dp值为原始string的长度
dp[i][0] = i, dp[0][j] = j
3> 状态转移方程:
if s1[i] == s2[j]
dp[i][j] = dp[i-1][j-1]
if s1[i] != s2[j]
a) 替换s2[j] -> s1[i]: dp[i][j] = dp[i - 1][j-1] + 1
b) 删除s1[i]: dp[i][j] = dp[i-1][j] + 1
c) 插入 s1[0...i] + s2[j-1] = s2[0...j]: dp[i][j] = dp[i][j-1] + 1
综上,dp[i][j] = min{dp[i-1][j-1], dp[i-1][j], dp[i][j-1]} + 1
dp[i][j] = dp[i-1][j-1], if s1[i] == s2[j]
dp[i][j] = min{dp[i-1][j-1], dp[i-1][j], dp[i][j-1]} + 1, if s1[i] != s2[j]
i in [1, m) , j in [1, n)
2、代码实现
package Q0099.Q0072EditDistance;
/*
DP
1. Define the state dp[i][j]
to be the minimum number of operations to convert word1[0...i) to word2[0...j)
2. Initial state
For the base case, that is, to convert a string to an empty string, the minimum number of operations(deletions)
is just the length of the string. So we have dp[i][0] = i and dp[0][j] = j.
3. State transition equation
For the general case to convert word1[0...i) to word2[0...j), we break this problem down into sub-problems.
Suppose we have already known how to convert word1[0...i-1) to word2[0...j-1) i.e. dp[i-1][j-1],
if word1[i-1] == word2[j-1], then no more operation is needed and dp[i][j] = dp[i-1][j-1]
if word1[i-1] != word2[j-1], we need to consider three cases.
a) Replace word1[i-1] by word2[j-1] i.e. dp[i][j] = dp[i-1][j-1] + 1
b) if word1[0...i-1) = word2[0...j) then delete word1[i-1] i.e. dp[i][j] = dp[i-1][j] + 1
c) if word1[0...i) + word2[j-1) = word2[0...j) then insert word2[j-1] to word1[0...i)
i.e. dp[i][j] = dp[i][j-1] + 1
So when word1[i-1] != word2[j-1], dp[i][j] will just be the minimum of the above three case
*/
public class Solution1 {
public int minDistance(String word1, String word2) {
int m = word1.length(), n = word2.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 1; i <= m; i++) dp[i][0] = i;
for (int j = 1; j <= n; j++) dp[0][j] = j;
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1))
dp[i][j] = dp[i - 1][j - 1];
else
dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1])) + 1;
}
}
return dp[m][n];
}
}
3、复杂度分析
时间复杂度: O(m * n)
空间复杂度: O(m * n)
3. Solution 2
1、思路分析
将低空间复杂度,使用pre,cur保存上一行和当前行的状态。
2、代码实现
package Q0099.Q0072EditDistance;
import java.util.Arrays;
/*
Note that each time when we update dp[i][j], we only need dp[i-1][j-1], dp[i][j-1] and dp[i-1][j].
We may optimize the space of the code to use only two vectors.
*/
public class Solution2 {
public int minDistance(String word1, String word2) {
int m = word1.length(), n = word2.length();
int[] pre = new int[n + 1];
int[] cur = new int[n + 1];
for (int i = 1; i <= n; i++) pre[i] = i;
for (int i = 1; i <= m; i++) {
cur[0] = i;
for (int j = 1; j <= n; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1))
cur[j] = pre[j - 1];
else
cur[j] = Math.min(pre[j - 1], Math.min(cur[j - 1], pre[j])) + 1;
}
// cur -> pre
System.arraycopy(cur, 0, pre, 0, cur.length);
Arrays.fill(cur, 0);
}
return pre[n];
}
}
3、复杂度分析
时间复杂度: O(m * n)
空间复杂度: O(n)
4. Solution 3
1、思路分析
进一步降低空间复杂度,只使用一行。
2、代码实现
package Q0099.Q0072EditDistance;
/*
Or even just one array.
*/
public class Solution3 {
public int minDistance(String word1, String word2) {
int m = word1.length(), n = word2.length(), pre;
int[] cur = new int[n + 1];
for (int i = 1; i <= n; i++) cur[i] = i;
for (int i = 1; i <= m; i++) {
pre = cur[0];
cur[0] = i;
for (int j = 1; j <= n; j++) {
int temp = cur[j];
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
cur[j] = pre;
} else {
cur[j] = Math.min(pre, Math.min(cur[j - 1], cur[j])) + 1;
}
pre = temp;
}
}
return cur[n];
}
}
3、复杂度分析
时间复杂度: O(m * n)
空间复杂度: O(n)
标签:Distance,...,Edit,复杂度,int,0072,word1,word2,dp 来源: https://www.cnblogs.com/junstat/p/16184296.html