其他分享
首页 > 其他分享> > Hadoop安装与常用操作命令

Hadoop安装与常用操作命令

作者:互联网

一、大纲

1、HDFS集群环境搭建

2、常见问题

3、HDFS Shell命令使用

 

 

二、集群环境搭建

下载地址: https://hadoop.apache.org/releases.html

 

1、初始化目录

在/bigdata/hadoop-3.2.2/下创建目录

mkdir logs secret hadoop_data hadoop_data/tmp hadoop_data/namenode hadoop_data/datanode

 

2、设置默认认证用户

vi hadoop-http-auth-signature-secret

root

 

使用simple伪安全配置,需要设置访问用户,具体见core-site.xml。如果需要更安全的认证可以使用kerberos。在hadoop web访问地址后面加 ?user.name=root

比如:http://yuxuan01:8088/cluster?user.name=root

 

3、修改所有服务器环境变量

vim /etc/profile

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.302.b08-0.el7_9.x86_64/jre

export HADOOP_HOME=/bigdata/hadoop-3.2.2

export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/sbin

 

source /etc/profile

 

4、配置env环境

1)分别在httpfs-env.sh、mapred-env.sh、yarn-env.sh文件前添加JAVA_HOME环境变量

目录:$HADOOP_HOME/etc/hadoop

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.302.b08-0.el7_9.x86_64/jre

 

2) 在hadoop-env.sh文件中添加JAVA_HOME和HADOOP_HOME

目录:$HADOOP_HOME/etc/hadoop

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.302.b08-0.el7_9.x86_64/jre

export HADOOP_HOME=/bigdata/hadoop-3.2.2

 

5、配置用户

在start-dfs.sh和stop-dfs.sh头部配置

HDFS_DATANODE_USER=root

HDFS_DATANODE_SECURE_USER=root

HDFS_NAMENODE_USER=root

HDFS_SECONDARYNAMENODE_USER=root

YARN_RESOURCEMANAGER_USER=root

YARN_NODEMANAGER_USER=root

 

在start-yarn.sh和stop-yarn.sh头部配置

 

YARN_RESOURCEMANAGER_USER=root

HADOOP_SECURE_DN_USER=yarn

YARN_NODEMANAGER_USER=root

 

6、core-site.xml 配置

<configuration>
  <property>
    <name>fs.defaultFS</name>
    <value>hdfs://yuxuan01:9000</value>
  </property>
  <property>
    <name>hadoop.tmp.dir</name>
    <value>/bigdata/hadoop-3.2.2/hadoop_data/tmp</value>
  </property>
  
  <property>
    <name>io.compression.codecs</name>
	<value>org.apache.hadoop.io.compress.GzipCodec,org.apache.hadoop.io.compress.DefaultCodec,com.hadoop.compression.lzo.LzoCodec,com.hadoop.compression.lzo.LzopCodec,org.apache.hadoop.io.compress.BZip2Codec</value>
  </property>
  
  <property>
    <name>io.compression.codec.lzo.class</name>
    <value>com.hadoop.compression.lzo.LzoCodec</value>
  </property>
  
  <property>
    <name>hadoop.http.filter.initializers</name>
    <value>org.apache.hadoop.security.AuthenticationFilterInitializer</value>
	<description></description>
  </property>
  
  <property>
    <name>hadoop.http.authentication.type</name>
    <value>simple</value>
  </property>
  <property>
    <name>hadoop.http.authentication.signature.secret.file</name>
    <value>/bigdata/hadoop-3.2.2/secret/hadoop-http-auth-signature-secret</value>
	<description></description>
  </property>
  <property>
   <name>hadoop.http.authentication.simple.anonymous.allowed</name>
    <value>false</value>
	<description></description>
  </property>
  
  
  <property>
    <name>dfs.permissions.enabled</name>
    <value>false</value>
  </property>

  <property>
    <name>hadoop.proxyuser.jack.hosts</name>
    <value>*</value>
  </property>

  <property>
    <name>hadoop.proxyuser.jack.groups</name>
    <value>*</value>
  </property>
  
  <!-- -->
  <property>
    <name>fs.trash.interval</name>
    <value>1440</value>
    <description></description>
  </property>
  <property>
    <name>fs.trash.checkpoint.interval</name>
    <value>1440</value>
  </property>
</configuration>

 

7、hdfs-site.xml配置

<configuration>
   <property>
      <name>dfs.namenode.name.dir</name>
      <value>/bigdata/hadoop-3.2.2/hadoop_data/namenode</value>
      <description></description>
   </property>

   <property>
      <name>dfs.datanode.data.dir</name>
      <value>/bigdata/hadoop-3.2.2/hadoop_data/datanode</value>
      <description></description>
   </property>

   <property>
      <name>dfs.replication</name>
      <value>3</value>
      <description></description>
   </property>
   
   <property>
      <name>dfs.secondary.http.address</name>
      <value>yuxuan02:9001</value>
      <description></description>
   </property>
  
   <property>
      <name>dfs.webhdfs.enabled</name>
      <value>true</value>
   </property>
</configuration>

 

8、mapred-site.xml配置

<configuration>
   <property>
      <name>mapreduce.framework.name</name>
      <value>yarn</value>
   </property>
   
   <property>
     <name>yarn.app.mapreduce.am.env</name>
     <value>HADOOP_MAPRED_HOME=/bigdata/hadoop-3.2.2/etc/hadoop:/bigdata/hadoop-3.2.2/share/hadoop/common/lib/*:/bigdata/hadoop-3.2.2/share/hadoop/common/*:/bigdata/hadoop-3.2.2/share/hadoop/hdfs:/bigdata/hadoop-3.2.2/share/hadoop/hdfs/lib/*:/bigdata/hadoop-3.2.2/share/hadoop/hdfs/*:/bigdata/hadoop-3.2.2/share/hadoop/mapreduce/*:/bigdata/hadoop-3.2.2/share/hadoop/yarn:/bigdata/hadoop-3.2.2/share/hadoop/yarn/lib/*:/bigdata/hadoop-3.2.2/share/hadoop/yarn/*</value>
   </property>
   <property>
     <name>mapreduce.map.env</name>
     <value>HADOOP_MAPRED_HOME=/bigdata/hadoop-3.2.2/etc/hadoop:/bigdata/hadoop-3.2.2/share/hadoop/common/lib/*:/bigdata/hadoop-3.2.2/share/hadoop/common/*:/bigdata/hadoop-3.2.2/share/hadoop/hdfs:/bigdata/hadoop-3.2.2/share/hadoop/hdfs/lib/*:/bigdata/hadoop-3.2.2/share/hadoop/hdfs/*:/bigdata/hadoop-3.2.2/share/hadoop/mapreduce/*:/bigdata/hadoop-3.2.2/share/hadoop/yarn:/bigdata/hadoop-3.2.2/share/hadoop/yarn/lib/*:/bigdata/hadoop-3.2.2/share/hadoop/yarn/*</value>
   </property>
   <property>
     <name>mapreduce.reduce.env</name>
     <value>HADOOP_MAPRED_HOME=/bigdata/hadoop-3.2.2/etc/hadoop:/bigdata/hadoop-3.2.2/share/hadoop/common/lib/*:/bigdata/hadoop-3.2.2/share/hadoop/common/*:/bigdata/hadoop-3.2.2/share/hadoop/hdfs:/bigdata/hadoop-3.2.2/share/hadoop/hdfs/lib/*:/bigdata/hadoop-3.2.2/share/hadoop/hdfs/*:/bigdata/hadoop-3.2.2/share/hadoop/mapreduce/*:/bigdata/hadoop-3.2.2/share/hadoop/yarn:/bigdata/hadoop-3.2.2/share/hadoop/yarn/lib/*:/bigdata/hadoop-3.2.2/share/hadoop/yarn/*</value>
   </property>

   <property>  
     <name>mapred.map.output.compression.codec</name>  
     <value>com.hadoop.compression.lzo.LzoCodec</value>  
   </property>  

   <property>  
     <name>mapred.child.env</name>  
     <value>LD_LIBRARY_PATH=/usr/local/hadoop/lzo/lib</value>  
   </property>
   
   <property>  
     <name>mapred.child.java.opts</name>  
     <value>-Xmx1048m</value>  
   </property> 
   
   <property>  
     <name>mapreduce.map.java.opts</name>  
     <value>-Xmx1310m</value>  
   </property> 
   
   <property>  
     <name>mapreduce.reduce.java.opts</name>  
     <value>-Xmx2620m</value>  
   </property> 
   
   <property>
     <name>mapreduce.job.counters.limit</name>
     <value>20000</value>
     <description>Limit on the number of counters allowed per job. The default value is 200.</description>
   </property>
</configuration>

 

9、yarn-site.xml配置

<configuration>
   <!-- Site specific YARN configuration properties -->
   <property>
      <name>yarn.nodemanager.aux-services</name>
      <value>mapreduce_shuffle</value>
   </property>
   
   <property>
      <name>yarn.resourcemanager.hostname</name>
      <value>yuxuan01</value>
   </property>
   
   <property>
      <description>Amount of physical memory, in MB, that can be allocated for containers.</description>
      <name>yarn.nodemanager.resource.memory-mb</name>
      <value>7192</value>
   </property>
   
   <property>
      <description>The minimum allocation for every container request at the RM,in MBs. 
	  Memory requests lower than this won't take effect,and the specified value will get allocated at minimum.</description>
      <name>yarn.scheduler.minimum-allocation-mb</name>
      <value>1024</value>
   </property>

   <property>
      <description>The maximum allocation for every container request at the RM,in MBs. 
	  Memory requests higher than this won't take effect, and will get capped to this value.</description>
      <name>yarn.scheduler.maximum-allocation-mb</name>
      <value>7192</value>
   </property>

   <property>
      <name>yarn.nodemanager.vmem-check-enabled</name>
	  <value>false</value>
   </property>
   
    <property>
      <name>yarn.app.mapreduce.am.command-opts</name>
      <value>-Xmx2457m</value>
  </property>
</configuration>

 

10、配置works

设置datanode的服务器,之前文件名是slaves,hadoop3之后改为workers了。目录:$HADOOP_HOME/etc/hadoop

 

11、同步到其他服务器目录

scp -r /bigdata/hadoop-3.2.2/ root@yuxuan02:/bigdata/

scp -r /bigdata/hadoop-3.2.3/ root@yuxuan03:/bigdata/

 

12、格式化hadoop

hdfs namenode -format

 

13、启动

./bin/start-all.sh

jps

 

14、web页面查看

  1. 首次访问(由于设置了simple安全策略):http://yuxuan01:9870?user.name=root

  2. Job查看:http://yuxuan01:8088/cluster?user.name=root

 

三、常见问题

1、启动Namenode失败

查看 /bigdata/hadoop-3.2.2/hadoop_data/namenode目录是否存在

工具初始化: ./bin/hadoop namenode -format

 

2、启动datanode失败

第一种方法:

每次格式化前,要先关闭

./stop-all.sh

然后再格式化

./hdfs namenode -format

最后启动

./start-all.sh

 

第二种方法:

进入/bigdata/hadoop-3.2.2/hadoop_data/namenode目录(此目录为namenode的dfs.name.dir配置的路径)

rm -rf /bigdata/hadoop-3.2.2/hadoop_data/namenode

然后再格式化

./hdfs namenode -format

最后启动

./start-all.sh

 

 

 

四、HDFS常用Shell命令

http://hadoop.apache.org/docs/r1.2.1/commands-manual.html

用户命令和管理员命令

./hadoop 查看所有命令

./hadoop fs -put hadoop / 假设上传hadoop文件 到/目录

./hadoop fs -lsr /

./hadoop fs -du / 查看文件大小

./hadoop fs -rm /hadoop 删除文件

./hadoop fs -rmr /hadoop 删除文件夹下所有文件

./hadoop fs -mkdir /louis 创建目录

./hadoop dfsadmin -report 报告文件信息和统计信息

./hadoop dfsadmin -safemode enter 只读模式

/hadoop dfsadmin -safemode leave 离开模式

./hadoop fsck /louis -files -blocks 检查文件是否健康

 

fsck作用

1) 检查文件系统的健康状态

2)查看文件所在的数据块

3)删除一个坏块

4)查找一个缺失的块

 

hadoop balancer 磁盘均衡器

hadoop archive 文件归档,小文件合并在一起

./hadoop archive -archiveName pack.har -p /loris hadoop arichivdDir 生成归档包

./hadoop fs -lsr /user/louris/arichiveDirpack.har

./hadoop fs -cat /user/louis/archiveDir/pack.har/_index 查看归档包文件

 

标签:操作命令,share,bigdata,yarn,Hadoop,3.2,HOME,hadoop,安装
来源: https://www.cnblogs.com/binfirechen/p/16180485.html