【墨鳌】【数据结构】【AVL树】
作者:互联网
AVL Tree
- 在 Binary Search Tree 现有属性之上,依赖于可以其二分查找的特性,进行树高的调整优化
- 在每个节点多维护一个子树高度(
height
)的信息 - 每次
insert/remove
时,按照限制条件,动态旋转,以满足任意节点的平衡因子的绝对值 \(<=1\)
节点属性
- key - 可以比较的对象类型
- left,right - 左右儿子节点
- height - 子树高度
public class AVLNode<Key> {
public Key key;
public AVLNode<Key> left, right;
int height;
...
}
AVLTree 核心部分
- root - 根节点
- insert - 插入 key
- remove - 移除 key
- balance - 姿态调整
姿态调整
LL型姿态:X右旋
RR型姿态:X左旋
LR型姿态:Y左旋 再 X右旋
RL型姿态:Y右旋 再 X左旋
测试与使用
- 结合上一篇文章
- 与 BST 对比测试
package trees;
import trees.objects.AVLTree;
import trees.objects.BinaryTree;
import java.util.Arrays;
import java.util.List;
public class Tests {
public static void main(String[] args) {
AVLTree<Integer> avl=new AVLTree<>();
BinaryTree<Integer,Integer> bst=new BinaryTree<>();
List<Integer> keys = Arrays.asList(1, 19, 30, 36, 50, 89, 101, 40, 90, 105, 103);
for (int key : keys) {
bst.put(key,key);
avl.insert(key);
System.out.println("BST:");
bst.printTree();
System.out.println("AVL Tree:");
avl.printTree();
System.out.println("**************************************");
}
}
}
完整Java代码实现
public class AVLTree<T extends Comparable<T>> {
private static final int MAX_HEIGHT_DIFFERENCE = 1;
private AVLNode<T> root;
public class AVLNode<Key> {
public Key key;
public AVLNode<Key> left, right;
int height;
public AVLNode(Key key, AVLNode<Key> left, AVLNode<Key> right) {
this.key = key;
this.left = left;
this.right = right;
this.height = 1;
}
}
public AVLTree() {
root = null;
}
public AVLTree(T... keys) {
if (keys == null || keys.length < 1) {
throw new NullPointerException();
}
root = new AVLNode<>(keys[0], null, null);
for (int i = 1; i < keys.length && keys[i] != null; i++) {
root = insert(root, keys[i]);
}
}
public T find(T key) {
if (key == null || root == null) {
return null;
}
return find(root, key, key.compareTo(root.key));
}
private T find(AVLNode<T> node, T key, int cmp) {
if (node == null) {
return null;
}
if (cmp == 0) {
return node.key;
}
return find(
(node = cmp > 0 ? node.right : node.left),
key,
node == null ? 0 : key.compareTo(node.key));
}
public void insert(T key) {
if (key == null) {
throw new NullPointerException();
}
root = insert(root, key);
}
private AVLNode<T> insert(AVLNode<T> node, T key) {
if (node == null) {
return new AVLNode<>(key, null, null);
}
int cmp = key.compareTo(node.key);
if (cmp == 0) {
return node;
}
if (cmp < 0) {
node.left = insert(node.left, key);
} else {
node.right = insert(node.right, key);
}
if (Math.abs(height(node.left) - height(node.right)) > MAX_HEIGHT_DIFFERENCE) {
node = balance(node);
}
refreshHeight(node);
return node;
}
private int height(AVLNode<T> node) {
if (node == null) {
return 0;
}
return node.height;
}
private void refreshHeight(AVLNode<T> node) {
node.height = Math.max(height(node.left), height(node.right)) + 1;
}
private AVLNode<T> balance(AVLNode<T> node) {
AVLNode<T> node1, node2;
// ll
if (height(node.left) > height(node.right) &&
height(node.left.left) >= height(node.left.right)) {
node1 = node.left;
node.left = node1.right;
node1.right = node;
refreshHeight(node);
return node1;
}
// lr
if (height(node.left) > height(node.right) &&
height(node.left.right) > height(node.left.left)) {
node1 = node.left;
node2 = node.left.right;
node.left = node2.right;
node1.right = node2.left;
node2.left = node1;
node2.right = node;
refreshHeight(node);
refreshHeight(node1);
return node2;
}
// rr
if (height(node.right) > height(node.left) &&
height(node.right.right) >= height(node.right.left)) {
node1 = node.right;
node.right = node1.left;
node1.left = node;
refreshHeight(node);
return node1;
}
// rl
if (height(node.right) > height(node.left) &&
height(node.right.left) > height(node.right.right)) {
node1 = node.right;
node2 = node.right.left;
node.right = node2.left;
node1.left = node2.right;
node2.left = node;
node2.right = node1;
refreshHeight(node);
refreshHeight(node1);
return node2;
}
return node;
}
public void remove(T key) {
if (key == null) {
throw new NullPointerException();
}
root = remove(root, key);
}
private AVLNode<T> remove(AVLNode<T> node, T key) {
if (node == null) {
return null;
}
int cmp = key.compareTo(node.key);
if (cmp < 0) {
node.left = remove(node.left, key);
}
if (cmp > 0) {
node.right = remove(node.right, key);
}
if (cmp == 0) {
if (node.left == null || node.right == null) {
return node.left == null ? node.right : node.left;
}
T successorKey = successorOf(node).key;
node = remove(node, successorKey);
node.key = successorKey;
}
if (Math.abs(height(node.left) - height(node.right)) > MAX_HEIGHT_DIFFERENCE) {
node = balance(node);
}
refreshHeight(node);
return node;
}
private AVLNode<T> successorOf(AVLNode<T> node) {
if (node == null) {
throw new NullPointerException();
}
if (node.left == null || node.right == null) {
return node.left == null ? node.right : node.left;
}
return height(node.left) > height(node.right) ?
findMax(node.left, node.left.right, node.left.right == null) :
findMin(node.right, node.right.left, node.right.left == null);
}
private AVLNode<T> findMax(AVLNode<T> node, AVLNode<T> right, boolean rightIsNull) {
if (rightIsNull) {
return node;
}
return findMax((node = right), node.right, node.right == null);
}
private AVLNode<T> findMin(AVLNode<T> node, AVLNode<T> left, boolean leftIsNull) {
if (leftIsNull) {
return node;
}
return findMin((node = left), node.left, node.left == null);
}
// -------------------------- Print Tree --------------------------
private void printTree(AVLNode node, String prefix, boolean isLeft) {
if (node == null) {
System.out.println("Empty tree");
return;
}
if (node.right != null) {
printTree(node.right, prefix + (isLeft ? "│ " : " "), false);
}
System.out.println(prefix + (isLeft ? "└── " : "┌── ") + node.key);
if (node.left != null) {
printTree(node.left, prefix + (isLeft ? " " : "│ "), true);
}
}
private void printTree(AVLNode node) {
printTree(node, "", true);
}
public void printTree() {
System.out.println(" >> START TO PRINT THE TREE:");
printTree(root);
System.out.println(" << END TO PRINT THE TREE");
}
}
标签:node,right,key,null,height,AVL,墨鳌,数据结构,left 来源: https://www.cnblogs.com/JasonCow/p/16120013.html