LSTM (Long Short Term Memory) networks
作者:互联网
# Define LSTM class Lstm(nn.Module): def __init__(self, input_size, hidden_size=2, output_size=1, num_layers=1): super().__init__() self.layer1 = nn.LSTM(input_size, hidden_size, num_layers) self.layer2 = nn.Linear(hidden_size, output_size) def forward(self, _x): x, _ = self.layer1(_x) s, b, h = x.shape x = x.view(s*b, h) x = self.layer2(x) x = x.view(s, b, -1) return x # Generate data n = 100 t = np.linspace(0,10.0*np.pi,n) X = np.sin(t) X = X.astype('float32') # Set window of past points for LSTM model input_N = 5 output_N = 1 batch = 5 # Split into train/test data last = int(n/2.5) Xtrain = X[:-last] Xtest = X[-last-input_N:] # Store window number of points as a sequence xin = [] next_X = [] for i in range(input_N,len(Xtrain)): xin.append(Xtrain[i-input_N:i]) next_X.append(Xtrain[i]) # Reshape data to format for LSTM xin, next_X = np.array(xin), np.array(next_X) xin = xin.reshape(-1,1,input_N) train_x = torch.from_numpy(xin) train_y = torch.from_numpy(next_X) train_x_tensor = train_x.reshape(-1,batch,input_N) # set batch size to 5 train_y_tensor = train_y.reshape(-1,batch,output_N) # set batch size to 5 model = Lstm(input_N, 5, output_N,1) # 5 hidden units loss_function = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-2) max_epochs = 1000 for epoch in range(max_epochs): output = model(train_x_tensor) loss = loss_function(output, train_y_tensor) loss.backward() optimizer.step() optimizer.zero_grad() if loss.item() < 1e-4: print('Epoch [{}/{}], Loss: {:.5f}'.format(epoch+1, max_epochs, loss.item())) print("The loss value is reached") break elif (epoch+1) % 100 == 0: print('Epoch: [{}/{}], Loss:{:.5f}'.format(epoch+1, max_epochs, loss.item())) # prediction on training dataset predictive_y_for_training = model(train_x_tensor) predictive_y_for_training = predictive_y_for_training.view(-1, 1).data.numpy() # ----------------- plot ------------------- plt.figure() plt.plot(train_y, label='Actual') plt.plot(predictive_y_for_training, 'm--', label='Lstm') plt.title('Train') plt.legend(loc=1) x_test_in = [] test_X =[] for i in range(input_N,len(Xtest)): x_test_in.append(Xtrain[i-input_N:i]) test_X.append(Xtrain[i]) x_test_in = np.array(x_test_in) test_x_tensor = x_test_in.reshape(-1, batch, input_N) # set batch size to 5 test_x_tensor = torch.from_numpy(test_x_tensor) predictive_y_for_testing = model(test_x_tensor) predictive_y_for_testing = predictive_y_for_testing.view(-1, 1).data.numpy() plt.figure() plt.plot(test_X,label = 'Actual') plt.plot(predictive_y_for_testing,'r-.',label='Lstm') plt.title('Test') plt.legend(loc=0) plt.show()
标签:Term,Short,tensor,train,Long,plt,test,input,size 来源: https://www.cnblogs.com/conpi/p/16114080.html