其他分享
首页 > 其他分享> > knn

knn

作者:互联网

写在前面

以下的代码只是学习中的随笔,如有侵权请联系删除

 

K_Nearest_Neighbor

from builtins import range
from builtins import object
import numpy as np
from past.builtins import xrange


class KNearestNeighbor(object):
    """ a kNN classifier with L2 distance """

    def __init__(self):
        pass

    def train(self, X, y):
        """
        Train the classifier. For k-nearest neighbors this is just
        memorizing the training data.
        Inputs:
        - X: A numpy array of shape (num_train, D) containing the training data
          consisting of num_train samples each of dimension D.
        - y: A numpy array of shape (N,) containing the training labels, where
             y[i] is the label for X[i].
        """
        self.X_train = X
        self.y_train = y

    def predict(self, X, k=1, num_loops=0):
        """
        Predict labels for test data using this classifier.
        Inputs:
        - X: A numpy array of shape (num_test, D) containing test data consisting
             of num_test samples each of dimension D.
        - k: The number of nearest neighbors that vote for the predicted labels.
        - num_loops: Determines which implementation to use to compute distances
          between training points and testing points.
        Returns:
        - y: A numpy array of shape (num_test,) containing predicted labels for the
          test data, where y[i] is the predicted label for the test point X[i].
        """
        if num_loops == 0:
            dists = self.compute_distances_no_loops(X)
        elif num_loops == 1:
            dists = self.compute_distances_one_loop(X)
        elif num_loops == 2:
            dists = self.compute_distances_two_loops(X)
        else:
            raise ValueError('Invalid value %d for num_loops' % num_loops)

        return self.predict_labels(dists, k=k)

    def compute_distances_two_loops(self, X):
        # 求 欧拉距离的双重循环函数
        """
        :param X:  为测试集,以当前的代码(适配knn实现时)而言 500 * 3072
        :return:
        """
        """
        Compute the distance between each test point in X and each training point
        in self.X_train using a nested loop over both the training data and the
        test data.
        Inputs:
        - X: A numpy array of shape (num_test, D) containing test data.
        Returns:
        - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
          is the Euclidean distance between the ith test point and the jth training
          point.
        """
        num_test = X.shape[0]
        num_train = self.X_train.shape[0]
        dists = np.zeros((num_test, num_train))
        for i in range(num_test):
            for j in range(num_train):
                #####################################################################
                # TODO:                                                             #
                # Compute the l2 distance between the ith test point and the jth    #
                # training point, and store the result in dists[i, j]. You should   #
                # not use a loop over dimension, nor use np.linalg.norm().          #
                #####################################################################
                # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

                # dists[i][j] = np.sqrt(np.dot(X[i], self.X_train[j])) it is Euclid dis, not dot
                dists[i][j] = np.sqrt(np.sum(np.square(X[i] - self.X_train[j])))
                """
                训练集中第j行减去 测试集中第i行 ,得到一个1*3072的小矩阵, 然后对每个元素进行平方再求和 然后开方
                得到 i 与 j的距离
                """
                # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        return dists

    def compute_distances_one_loop(self, X):
        """
        Compute the distance between each test point in X and each training point
        in self.X_train using a single loop over the test data.
        Input / Output: Same as compute_distances_two_loops
        """
        num_test = X.shape[0]
        num_train = self.X_train.shape[0]
        dists = np.zeros((num_test, num_train))
        for i in range(num_test):
            #######################################################################
            # TODO:                                                               #
            # Compute the l2 distance between the ith test point and all training #
            # points, and store the result in dists[i, :].                        #
            # Do not use np.linalg.norm().                                        #
            #######################################################################
            # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

            dists[i, :] = np.sqrt(np.sum(np.square(X[i] - self.X_train), axis=1))
            """
            self.X_train - X[i, :]  训练集矩阵中每行都减去 测试集的第i行 (临时)
            np.square(self.X_train - X[i, :]) 返回 每个元素都平方后的矩阵
            np.sum(np.square(self.X_train - X[i, :]), axis=1)  对每行进行求和, 最后得到 一个 1 * 5000 的矩阵
             ! axis = 0 沿着 纵轴对矩阵进行操作, axis = 1 沿着 横轴对 矩阵进行操作, 如果不指定 则会对所有元素进行操作
            np.sqrt(np.sum(np.square(self.X_train - X[i, :]), axis=1)) : 数组中每个元素都进行开方
            双循环和单循环所完成的任务是一样的
            """
            # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        return dists

    def compute_distances_no_loops(self, X):
        """
        Compute the distance between each test point in X and each training point
        in self.X_train using no explicit loops.
        Input / Output: Same as compute_distances_two_loops
        """
        num_test = X.shape[0]
        num_train = self.X_train.shape[0]
        dists = np.zeros((num_test, num_train))
        #########################################################################
        # TODO:                                                                 #
        # Compute the l2 distance between all test points and all training      #
        # points without using any explicit loops, and store the result in      #
        # dists.                                                                #
        #                                                                       #
        # You should implement this function using only basic array operations; #
        # in particular you should not use functions from scipy,                #
        # nor use np.linalg.norm().                                             #
        #                                                                       #
        # HINT: Try to formulate the l2 distance using matrix multiplication    #
        #       and two broadcast sums.                                         #
        #########################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        X_square = np.sum(X * X, axis=1, keepdims=True)
        Xtr_square = np.sum(self.X_train * self.X_train, axis=1, keepdims=True).T
        dists = np.sqrt(-2 * np.dot(X, self.X_train.T) + X_square + Xtr_square)

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        return dists

    def predict_labels(self, dists, k=1):
        """
        Given a matrix of distances between test points and training points,
        predict a label for each test point.
        Inputs:
        - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
          gives the distance betwen the ith test point and the jth training point.
        Returns:
        - y: A numpy array of shape (num_test,) containing predicted labels for the
          test data, where y[i] is the predicted label for the test point X[i].
        """
        num_test = dists.shape[0]
        y_pred = np.zeros(num_test)
        for i in range(num_test):
            # A list of length k storing the labels of the k nearest neighbors to
            # the ith test point.
            closest_y = []
            #########################################################################
            # TODO:                                                                 #
            # Use the distance matrix to find the k nearest neighbors of the ith    #
            # testing point, and use self.y_train to find the labels of these       #
            # neighbors. Store these labels in closest_y.                           #
            # Hint: Look up the function numpy.argsort.                             #
            #########################################################################
            # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
            '''
            index = np.argsort(dists[i])
            for j in range(k):
              label = self.y_train[index[j]]
              closest_y.append(label)
            '''
            closest_y = self.y_train[np.argsort(dists[i])[:k]]

            # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
            #########################################################################
            # TODO:                                                                 #
            # Now that you have found the labels of the k nearest neighbors, you    #
            # need to find the most common label in the list closest_y of labels.   #
            # Store this label in y_pred[i]. Break ties by choosing the smaller     #
            # label.                                                                #
            #########################################################################
            # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

            y_pred[i] = np.argmax(np.bincount(closest_y))

            # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        return y_pred

关于无循环的推导

 

knn.ipynb

我的knn.ipynb

 

标签:knn,num,self,np,train,dists,test
来源: https://www.cnblogs.com/wojiuyishui/p/16110468.html