Event Recommendation Engine Challenge分步解析第四步
作者:互联网
一、请知晓
本文是基于Event Recommendation Engine Challenge分步解析第一,二,三步,需要读者先阅读上篇文章解析
二、构建event和event相似度数据
我们先看看events.csv.gz:
import pandas as pd df_events_csv = pd.read_csv('events.csv.gz', compression='gzip') df_events_csv.head()
代码实例结果:
文件记录了用户对某event的信息(c_100后面还有一列:c_101):
我们来看看如何对上面表中的列信息进行数值转换
1)start_time:参考Event Recommendation Engine Challenge分步解析第二步4)中的joinedAt列处理
2)city,3)state,4)zip,5)country列处理都利用了hashlib包:注意这里处理event信息的时候,只有那些出现在train.csv和test.csv中的event才会进入数值转换程序
import hashlib def FeatureHash(value): if len(value.strip()) == 0: return -1 else: return int( hashlib.sha224(value.encode('utf-8')).hexdigest()[0:4] ,16) print(FeatureHash('Muaraenim'))#47294 print(FeatureHash('a test demo'))#4030
所以,我们在对NA值进行填充或者多种字符串进行数值转换的时候,使用hashlib也是一个不错的选择
6),lat和7)lon列处理:
def getFloatValue(self, value): if len(value.strip()) == 0: return 0.0 else: return float(value)
空值用0.0填充,其他转换为自身的float型
8)c_1之后列(也就是第10列之后)处理:
这里用了一个矩阵eventContMatrix来保存c_1到c_100列信息,但是没有用的c_other列,why?
9)将eventPropMatrix和eventContMatrix矩阵归一化后进行文件保存
10)根据第一步中的uniqueEventPairs来计算event pairs相似度
利用了scipy.spatial.distance的correlation和cosine方法
11)变量介绍
nevents:events数目,即train.csv和test.csv总共多少个events,13418个
self.eventPropMatrix:稀疏矩阵,shape为(13418,7),7代表events.csv.gz中的7列特征,最后进行了归一化
self.eventContMatrix:稀疏矩阵,shape为(13418,100),100代表events.csv.gz文件中的c_1到c_100特征,最后进行了归一化
self.eventPropSim:由user-event行为计算出来的event pair相似度,需要用到第一步中的uniqueEventPairs
self.eventContSim:由event本身的信息计算出的event pair相似度,需要用到第一步中的uniqueEventPairs
12)我们来看看第四步代码
from collections import defaultdict import locale, pycountry import scipy.sparse as ss import scipy.io as sio import itertools #import cPickle #From python3, cPickle has beed replaced by _pickle import _pickle as cPickle import scipy.spatial.distance as ssd import datetime from sklearn.preprocessing import normalize import gzip import numpy as np import hashlib #处理user和event关联数据 class ProgramEntities: """ 我们只关心train和test中出现的user和event,因此重点处理这部分关联数据, 经过统计:train和test中总共3391个users和13418个events """ def __init__(self): #统计训练集中有多少独立的用户的events uniqueUsers = set()#uniqueUsers保存总共多少个用户:3391个 uniqueEvents = set()#uniqueEvents保存总共多少个events:13418个 eventsForUser = defaultdict(set)#字典eventsForUser保存了每个user:所对应的event usersForEvent = defaultdict(set)#字典usersForEvent保存了每个event:哪些user点击 for filename in ['train.csv', 'test.csv']: f = open(filename) f.readline()#跳过第一行 for line in f: cols = line.strip().split(',') uniqueUsers.add( cols[0] ) uniqueEvents.add( cols[1] ) eventsForUser[cols[0]].add( cols[1] ) usersForEvent[cols[1]].add( cols[0] ) f.close() self.userEventScores = ss.dok_matrix( ( len(uniqueUsers), len(uniqueEvents) ) ) self.userIndex = dict() self.eventIndex = dict() for i, u in enumerate(uniqueUsers): self.userIndex[u] = i for i, e in enumerate(uniqueEvents): self.eventIndex[e] = i ftrain = open('train.csv') ftrain.readline() for line in ftrain: cols = line.strip().split(',') i = self.userIndex[ cols[0] ] j = self.eventIndex[ cols[1] ] self.userEventScores[i, j] = int( cols[4] ) - int( cols[5] ) ftrain.close() sio.mmwrite('PE_userEventScores', self.userEventScores) #为了防止不必要的计算,我们找出来所有关联的用户或者关联的event #所谓关联用户指的是至少在同一个event上有行为的用户user pair #关联的event指的是至少同一个user有行为的event pair self.uniqueUserPairs = set() self.uniqueEventPairs = set() for event in uniqueEvents: users = usersForEvent[event] if len(users) > 2: self.uniqueUserPairs.update( itertools.combinations(users, 2) ) for user in uniqueUsers: events = eventsForUser[user] if len(events) > 2: self.uniqueEventPairs.update( itertools.combinations(events, 2) ) #rint(self.userIndex) cPickle.dump( self.userIndex, open('PE_userIndex.pkl', 'wb')) cPickle.dump( self.eventIndex, open('PE_eventIndex.pkl', 'wb') ) #数据清洗类 class DataCleaner: def __init__(self): #一些字符串转数值的方法 #载入locale self.localeIdMap = defaultdict(int) for i, l in enumerate(locale.locale_alias.keys()): self.localeIdMap[l] = i + 1 #载入country self.countryIdMap = defaultdict(int) ctryIdx = defaultdict(int) for i, c in enumerate(pycountry.countries): self.countryIdMap[c.name.lower()] = i + 1 if c.name.lower() == 'usa': ctryIdx['US'] = i if c.name.lower() == 'canada': ctryIdx['CA'] = i for cc in ctryIdx.keys(): for s in pycountry.subdivisions.get(country_code=cc): self.countryIdMap[s.name.lower()] = ctryIdx[cc] + 1 self.genderIdMap = defaultdict(int, {'male':1, 'female':2}) #处理LocaleId def getLocaleId(self, locstr): #这样因为localeIdMap是defaultdict(int),如果key中没有locstr.lower(),就会返回默认int 0 return self.localeIdMap[ locstr.lower() ] #处理birthyear def getBirthYearInt(self, birthYear): try: return 0 if birthYear == 'None' else int(birthYear) except: return 0 #性别处理 def getGenderId(self, genderStr): return self.genderIdMap[genderStr] #joinedAt def getJoinedYearMonth(self, dateString): dttm = datetime.datetime.strptime(dateString, "%Y-%m-%dT%H:%M:%S.%fZ") return "".join( [str(dttm.year), str(dttm.month) ] ) #处理location def getCountryId(self, location): if (isinstance( location, str)) and len(location.strip()) > 0 and location.rfind(' ') > -1: return self.countryIdMap[ location[location.rindex(' ') + 2: ].lower() ] else: return 0 #处理timezone def getTimezoneInt(self, timezone): try: return int(timezone) except: return 0 def getFeatureHash(self, value): if len(value.strip()) == 0: return -1 else: #return int( hashlib.sha224(value).hexdigest()[0:4], 16) python3会报如下错误 #TypeError: Unicode-objects must be encoded before hashing return int( hashlib.sha224(value.encode('utf-8')).hexdigest()[0:4], 16)#python必须先进行encode def getFloatValue(self, value): if len(value.strip()) == 0: return 0.0 else: return float(value) #用户与用户相似度矩阵 class Users: """ 构建user/user相似度矩阵 """ def __init__(self, programEntities, sim=ssd.correlation):#spatial.distance.correlation(u, v) #计算向量u和v之间的相关系数 cleaner = DataCleaner() nusers = len(programEntities.userIndex.keys())#3391 #print(nusers) fin = open('users.csv') colnames = fin.readline().strip().split(',') #7列特征 self.userMatrix = ss.dok_matrix( (nusers, len(colnames)-1 ) )#构建稀疏矩阵 for line in fin: cols = line.strip().split(',') #只考虑train.csv中出现的用户,这一行是作者注释上的,但是我不是很理解 #userIndex包含了train和test的所有用户,为何说只考虑train.csv中出现的用户 if cols[0] in programEntities.userIndex: i = programEntities.userIndex[ cols[0] ]#获取user:对应的index self.userMatrix[i, 0] = cleaner.getLocaleId( cols[1] )#locale self.userMatrix[i, 1] = cleaner.getBirthYearInt( cols[2] )#birthyear,空值0填充 self.userMatrix[i, 2] = cleaner.getGenderId( cols[3] )#处理性别 self.userMatrix[i, 3] = cleaner.getJoinedYearMonth( cols[4] )#处理joinedAt列 self.userMatrix[i, 4] = cleaner.getCountryId( cols[5] )#处理location self.userMatrix[i, 5] = cleaner.getTimezoneInt( cols[6] )#处理timezone fin.close() #归一化矩阵 self.userMatrix = normalize(self.userMatrix, norm='l1', axis=0, copy=False) sio.mmwrite('US_userMatrix', self.userMatrix) #计算用户相似度矩阵,之后会用到 self.userSimMatrix = ss.dok_matrix( (nusers, nusers) )#(3391,3391) for i in range(0, nusers): self.userSimMatrix[i, i] = 1.0 for u1, u2 in programEntities.uniqueUserPairs: i = programEntities.userIndex[u1] j = programEntities.userIndex[u2] if (i, j) not in self.userSimMatrix: #print(self.userMatrix.getrow(i).todense()) 如[[0.00028123,0.00029847,0.00043592,0.00035208,0,0.00032346]] #print(self.userMatrix.getrow(j).todense()) 如[[0.00028123,0.00029742,0.00043592,0.00035208,0,-0.00032346]] usim = sim(self.userMatrix.getrow(i).todense(),self.userMatrix.getrow(j).todense()) self.userSimMatrix[i, j] = usim self.userSimMatrix[j, i] = usim sio.mmwrite('US_userSimMatrix', self.userSimMatrix) #用户社交关系挖掘 class UserFriends: """ 找出某用户的那些朋友,想法非常简单 1)如果你有更多的朋友,可能你性格外向,更容易参加各种活动 2)如果你朋友会参加某个活动,可能你也会跟随去参加一下 """ def __init__(self, programEntities): nusers = len(programEntities.userIndex.keys())#3391 self.numFriends = np.zeros( (nusers) )#array([0., 0., 0., ..., 0., 0., 0.]),保存每一个用户的朋友数 self.userFriends = ss.dok_matrix( (nusers, nusers) ) fin = gzip.open('user_friends.csv.gz') print( 'Header In User_friends.csv.gz:',fin.readline() ) ln = 0 #逐行打开user_friends.csv.gz文件 #判断第一列的user是否在userIndex中,只有user在userIndex中才是我们关心的user #获取该用户的Index,和朋友数目 #对于该用户的每一个朋友,如果朋友也在userIndex中,获取其朋友的userIndex,然后去userEventScores中获取该朋友对每个events的反应 #score即为该朋友对所有events的平均分 #userFriends矩阵记录了用户和朋友之间的score #如851286067:1750用户出现在test.csv中,该用户在User_friends.csv.gz中一共2151个朋友 #那么其朋友占比应该是2151 / 总的朋友数sumNumFriends=3731377.0 = 2151 / 3731377 = 0.0005764627910822198 for line in fin: if ln % 200 == 0: print( 'Loading line:', ln ) cols = line.decode().strip().split(',') user = cols[0] if user in programEntities.userIndex: friends = cols[1].split(' ')#获得该用户的朋友列表 i = programEntities.userIndex[user] self.numFriends[i] = len(friends) for friend in friends: if friend in programEntities.userIndex: j = programEntities.userIndex[friend] #the objective of this score is to infer the degree to #and direction in which this friend will influence the #user's decision, so we sum the user/event score for #this user across all training events eventsForUser = programEntities.userEventScores.getrow(j).todense()#获取朋友对每个events的反应:0, 1, or -1 #print(eventsForUser.sum(), np.shape(eventsForUser)[1] ) #socre即是用户朋友在13418个events上的平均分 score = eventsForUser.sum() / np.shape(eventsForUser)[1]#eventsForUser = 13418, #print(score) self.userFriends[i, j] += score self.userFriends[j, i] += score ln += 1 fin.close() #归一化数组 sumNumFriends = self.numFriends.sum(axis=0)#每个用户的朋友数相加 #print(sumNumFriends) self.numFriends = self.numFriends / sumNumFriends#每个user的朋友数目比例 sio.mmwrite('UF_numFriends', np.matrix(self.numFriends) ) self.userFriends = normalize(self.userFriends, norm='l1', axis=0, copy=False) sio.mmwrite('UF_userFriends', self.userFriends) #构造event和event相似度数据 class Events: """ 构建event-event相似度,注意这里有2种相似度 1)由用户-event行为,类似协同过滤算出的相似度 2)由event本身的内容(event信息)计算出的event-event相似度 """ def __init__(self, programEntities, psim=ssd.correlation, csim=ssd.cosine): cleaner = DataCleaner() fin = gzip.open('events.csv.gz') fin.readline()#skip header nevents = len(programEntities.eventIndex) print(nevents)#13418 self.eventPropMatrix = ss.dok_matrix( (nevents, 7) ) self.eventContMatrix = ss.dok_matrix( (nevents, 100) ) ln = 0 for line in fin: #if ln > 10: #break cols = line.decode().strip().split(',') eventId = cols[0] if eventId in programEntities.eventIndex: i = programEntities.eventIndex[eventId] self.eventPropMatrix[i, 0] = cleaner.getJoinedYearMonth( cols[2] )#start_time self.eventPropMatrix[i, 1] = cleaner.getFeatureHash( cols[3] )#city self.eventPropMatrix[i, 2] = cleaner.getFeatureHash( cols[4] )#state self.eventPropMatrix[i, 3] = cleaner.getFeatureHash( cols[5] )#zip self.eventPropMatrix[i, 4] = cleaner.getFeatureHash( cols[6] )#country self.eventPropMatrix[i, 5] = cleaner.getFloatValue( cols[7] )#lat self.eventPropMatrix[i, 6] = cleaner.getFloatValue( cols[8] )#lon for j in range(9, 109): self.eventContMatrix[i, j-9] = cols[j] ln += 1 fin.close() self.eventPropMatrix = normalize(self.eventPropMatrix, norm='l1', axis=0, copy=False) sio.mmwrite('EV_eventPropMatrix', self.eventPropMatrix) self.eventContMatrix = normalize(self.eventContMatrix, norm='l1', axis=0, copy=False) sio.mmwrite('EV_eventContMatrix', self.eventContMatrix) #calculate similarity between event pairs based on the two matrices self.eventPropSim = ss.dok_matrix( (nevents, nevents) ) self.eventContSim = ss.dok_matrix( (nevents, nevents) ) for e1, e2 in programEntities.uniqueEventPairs: i = programEntities.eventIndex[e1] j = programEntities.eventIndex[e2] if not ((i, j) in self.eventPropSim): epsim = psim( self.eventPropMatrix.getrow(i).todense(), self.eventPropMatrix.getrow(j).todense()) self.eventPropSim[i, j] = epsim self.eventPropSim[j, i] = epsim if not ((i, j) in self.eventContSim): ecsim = csim( self.eventContMatrix.getrow(i).todense(), self.eventContMatrix.getrow(j).todense()) self.eventContSim[i, j] = ecsim self.eventContSim[j, i] = ecsim sio.mmwrite('EV_eventPropSim', self.eventPropSim) sio.mmwrite('EV_eventContSim', self.eventContSim) print('第1步:统计user和event相关信息...') pe = ProgramEntities() print('第1步完成...\n') print('第2步:计算用户相似度信息,并用矩阵形式存储...') #Users(pe) print('第2步完成...\n') print('第3步:计算用户社交关系信息,并存储...') UserFriends(pe) print('第3步完成...\n') print('第4步:计算event相似度信息,并用矩阵形式存储...') Events(pe) print('第4步完成...\n')
至此,第四步完成,哪里有不明白的请留言
我们来看看第五步
标签:Engine,Challenge,cols,self,userIndex,user,Recommendation,csv,event 来源: https://www.cnblogs.com/always-fight/p/10497546.html