Liner Regression
作者:互联网
import numpy as np # y = w*x + b def compute_error_for_line_given_points(b,w,points): totalError=0 for i in range(0,len(points)): x=points[i,0] y=points[i,1] totalError +=(y-(w*x+b))**2 return totalError / float(len(points)) def step_gradient(b_current,w_current,points,learningRate): b_gradient=0 w_gradient=0 N=float(len(points)) for i in range(0,len(points)): x=points[i,0] y=points[i,1] b_gradient+=-(2/N)*(y-((w_current*x)+b_current)) w_gradient+=-(2/N)*x*(y-((w_current*x))+b_current) new_b = b_current-(learningRate*b_gradient) new_w = w_current-(learningRate*w_gradient) return [new_b,new_w] def gradient_descent_runnder(points,starting_b,starting_w,learning_rate,num_iterations): b=starting_b w=starting_w for i in range(num_iterations): b,w=step_gradient(b,w,np.array(points),learning_rate) return [b,w] def run(): points=np.genfromtxt("data.csv",delimiter=',') learning_rate=0.0001 initial_b=0 initial_w=0 num_iterations=1000 print("Starting gradient descent at b={0},w={1},error={2}" .format(initial_b,initial_w, compute_error_for_line_given_points(initial_b,initial_w,points)) ) print('Running.....') [b,w]=gradient_descent_runnder(points,initial_b,initial_w,learning_rate,num_iterations) print('After {0} iterations b={1},w={2},error={3}' .format(num_iterations,b,w, compute_error_for_line_given_points(b,w,points)) ) if __name__=='__main__': run()
标签:num,gradient,initial,Liner,current,points,iterations,Regression 来源: https://www.cnblogs.com/skiper/p/16093827.html