其他分享
首页 > 其他分享> > 财政收入预测

财政收入预测

作者:互联网

一、灰度预测函数

def GM11(x0): #自定义灰色预测函数
  import numpy as np
  x1 = x0.cumsum() #1-AGO序列
  z1 = (x1[:len(x1)-1] + x1[1:])/2.0 #紧邻均值(MEAN)生成序列
  z1 = z1.reshape((len(z1),1))
  B = np.append(-z1, np.ones_like(z1), axis = 1)
  Yn = x0[1:].reshape((len(x0)-1, 1))
  [[a],[b]] = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Yn) #计算参数
  f = lambda k: (x0[0]-b/a)*np.exp(-a*(k-1))-(x0[0]-b/a)*np.exp(-a*(k-2)) #还原值
  delta = np.abs(x0 - np.array([f(i) for i in range(1,len(x0)+1)]))
  C = delta.std()/x0.std()
  P = 1.0*(np.abs(delta - delta.mean()) < 0.6745*x0.std()).sum()/len(x0)
  return f, a, b, x0[0], C, P #返回灰色预测函数、a、b、首项、方差比、小残差概率
复制代码
import sys
sys.path.append('C:/Users/86136/Documents/python大数据分析/课本源代码以及数据/chapter6/demo/code')  # 设置路径
import numpy as np
import pandas as pd
from GM11 import GM11  # 引入自编的灰色预测函数

inputfile1 = '../tmp/new_reg_data.csv'  # 输入的数据文件
inputfile2 = '../data/data.csv'  # 输入的数据文件
new_reg_data = pd.read_csv(inputfile1)  # 读取经过特征选择后的数据
data = pd.read_csv(inputfile2)  # 读取总的数据
new_reg_data.index = range(1994, 2014)
new_reg_data.loc[2014] = None
new_reg_data.loc[2015] = None
l = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
for i in l:
  f = GM11(new_reg_data.loc[range(1994, 2014),i].values)[0]
  new_reg_data.loc[2014,i] = f(len(new_reg_data)-1)  # 2014年预测结果
  new_reg_data.loc[2015,i] = f(len(new_reg_data))  # 2015年预测结果
  new_reg_data[i] = new_reg_data[i].round(2)  # 保留两位小数
outputfile = '../tmp/new_reg_data_GM11.xls'  # 灰色预测后保存的路径
y = list(data['y'].values)  # 提取财政收入列,合并至新数据框中
y.extend([np.nan,np.nan])
new_reg_data['y'] = y
new_reg_data.to_excel(outputfile)  # 结果输出
print('预测结果为:\n',new_reg_data.loc[2014:2015,:])  # 预测结果展示

LinearSVR()函数后进行预测

import matplotlib.pyplot as plt
from sklearn.svm import LinearSVR

inputfile = '../tmp/new_reg_data_GM11.xls'  # 灰色预测后保存的路径
data = pd.read_excel(inputfile)  # 读取数据
feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']  # 属性所在列
data_train = data.iloc[0:20].copy()  # 取2014年前的数据建模
data_mean = data_train.mean()
data_std = data_train.std()
data_train = (data_train - data_mean)/data_std  # 数据标准化
x_train = data_train[feature].values  # 属性数据
y_train = data_train['y'].values  # 标签数据

linearsvr = LinearSVR()  # 调用LinearSVR()函数
linearsvr.fit(x_train,y_train)
x = ((data[feature] - data_mean[feature])/data_std[feature]).values  # 预测,并还原结果。
data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y']
outputfile = '../tmp/new_reg_data_GM11_revenue.xls'  # SVR预测后保存的结果
data.to_excel(outputfile)

print('真实值与预测值分别为:\n',data[['y','y_pred']])

fig = data[['y','y_pred']].plot(subplots = True, style=['b-o','r-*'])  # 画出预测结果图
plt.show()

 

 

 

AERIMA

import pandas as pd
# 参数初始化
discfile = 'C:/Users/86136/Desktop/python数据挖掘/课本源代码及数据/chapter6/demo/data/data.csv'
forecastnum = 5

# 读取数据,指定日期列为指标,pandas自动将“日期”列识别为Datetime格式
data = pd.read_csv(discfile)

x = 'y'
data = data[[x]]

# 时序图
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
data.plot()
plt.show()

# 自相关图
from statsmodels.graphics.tsaplots import plot_acf
plot_acf(data).show()

# 平稳性检测
from statsmodels.tsa.stattools import adfuller as ADF
print('原始序列的ADF检验结果为:', ADF(data['y']))
# 返回值依次为adf、pvalue、usedlag、nobs、critical values、icbest、regresults、resstore

# 差分后的结果
D_data = data.diff().dropna()
D_data.columns = ['收入差分']
D_data.plot()  # 时序图
plt.show()
plot_acf(D_data).show()  # 自相关图
from statsmodels.graphics.tsaplots import plot_pacf
plot_pacf(D_data).show()  # 偏自相关图
print('差分序列的ADF检验结果为:', ADF(D_data['收入差分']))  # 平稳性检测

# 白噪声检验
from statsmodels.stats.diagnostic import acorr_ljungbox
print('差分序列的白噪声检验结果为:', acorr_ljungbox(D_data, lags=1))  # 返回统计量和p值

from statsmodels.tsa.arima_model import ARIMA

# 定阶
data['y'] = data['y'].astype(float) 
pmax = int(len(D_data)/10)  # 一般阶数不超过length/10
qmax = int(len(D_data)/10)  # 一般阶数不超过length/10
bic_matrix = []  # BIC矩阵
for p in range(pmax+1):
  tmp = []
  for q in range(qmax+1):
    try:  # 存在部分报错,所以用try来跳过报错。
      tmp.append(ARIMA(data, (p,1,q)).fit().bic)
    except:
      tmp.append(None)
  bic_matrix.append(tmp)

bic_matrix = pd.DataFrame(bic_matrix)  # 从中可以找出最小值

p,q = bic_matrix.stack().idxmin()  # 先用stack展平,然后用idxmin找出最小值位置。
print('BIC最小的p值和q值为:%s、%s' %(p,q)) 
model = ARIMA(data, (p,1,q)).fit()  # 建立ARIMA(0, 1, 1)模型
print('模型报告为:\n', model.summary2())
print('预测未来5天,其预测结果、标准误差、置信区间如下:\n', model.forecast(5))

 

标签:预测,财政收入,import,np,new,x0,data,reg
来源: https://www.cnblogs.com/0907wwx/p/16089587.html