自定义打印类信息:def __repr__(self)
作者:互联网
Example:
import torch import torch.nn.functional as F from torch.nn.modules.module import Module from torch.nn.parameter import Parameter class GraphConvolution(Module): def __init__(self, in_features, out_features, dropout=0., act=F.relu): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.dropout = dropout self.act = act self.weight = Parameter(torch.FloatTensor(in_features, out_features)) self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.weight) def forward(self, input, adj): input = F.dropout(input, self.dropout, self.training) support = torch.mm(input, self.weight) output = torch.spmm(adj, support) output = self.act(output) return output # def __repr__(self): # return self.__class__.__name__ + ' (' \ # + str(self.in_features) + ' -> ' \ # + str(self.out_features) + ')' if __name__ =='__main__': gc = GraphConvolution(in_features=10, out_features=10, dropout=0., act=F.relu) print(gc)
加 def __repr__(self)
GraphConvolution (10 -> 10)
不加 def __repr__(self) :
GraphConvolution()
标签:__,features,自定义,self,torch,def,out 来源: https://www.cnblogs.com/BlairGrowing/p/16066265.html