神经网络和决策树
作者:互联网
1、神经网络
'''神经网络测试''' import pandas as pd from keras.models import Sequential from keras.layers.core import Dense, Activation import numpy as np # 参数初始化 inputfile = 'C:/Users/86183/Desktop/data/bankloan.xls' data = pd.read_excel(inputfile) x_test = data.iloc[:,:8].values y_test = data.iloc[:,8].values model = Sequential() # 建立模型 model.add(Dense(input_dim = 8, units = 8)) model.add(Activation('relu')) # 用relu函数作为激活函数,能够大幅提供准确度 model.add(Dense(input_dim = 8, units = 1)) model.add(Activation('sigmoid')) # 由于是0-1输出,用sigmoid函数作为激活函数 model.compile(loss = 'mean_squared_error', optimizer = 'adam') # 编译模型。由于我们做的是二元分类,所以我们指定损失函数为binary_crossentropy,以及模式为binary # 另外常见的损失函数还有mean_squared_error、categorical_crossentropy等,请阅读帮助文件。 # 求解方法我们指定用adam,还有sgd、rmsprop等可选 model.fit(x_test, y_test, epochs = 1000, batch_size = 10) predict_x=model.predict(x_test) classes_x=np.argmax(predict_x,axis=1) yp = classes_x.reshape(len(y_test)) def cm_plot(y, yp): from sklearn.metrics import confusion_matrix cm = confusion_matrix(y, yp) import matplotlib.pyplot as plt plt.matshow(cm, cmap=plt.cm.Greens) plt.colorbar() for x in range(len(cm)): for y in range(len(cm)): plt.annotate(cm[x,y], xy=(x, y), horizontalalignment='center', verticalalignment='center') plt.ylabel('True label') plt.xlabel('Predicted label') return plt cm_plot(y_test,yp).show()# 显示混淆矩阵可视化结果 score = model.evaluate(x_test,y_test,batch_size=128) # 模型评估 print(score)
运行结果
2、决策树
# -*- coding: utf-8 -*- # 代码5-2 import pandas as pd # 参数初始化 filename = 'C:/Users/86183/Desktop/data/bankloan.xls' data = pd.read_excel(filename) # 导入数据 # 数据是类别标签,要将它转换为数据 # 用1来表示“好”“是”“高”这三个属性,用-1来表示“坏”“否”“低” x = data.iloc[:,:8].astype(int) y = data.iloc[:,8].astype(int) from sklearn.tree import DecisionTreeClassifier as DTC dtc = DTC(criterion='entropy') # 建立决策树模型,基于信息熵 dtc.fit(x, y) # 训练模型 # 导入相关函数,可视化决策树。 # 导出的结果是一个dot文件,需要安装Graphviz才能将它转换为pdf或png等格式。 from sklearn.tree import export_graphviz x = pd.DataFrame(x) """ string1 = ''' edge [fontname="NSimSun"]; node [ fontname="NSimSun" size="15,15"]; { ''' string2 = '}' """ with open("C:/Users/86183/Desktop/data/tree.dot", 'w') as f: export_graphviz(dtc, feature_names = x.columns, out_file = f) f.close() from IPython.display import Image from sklearn import tree import pydotplus dot_data = tree.export_graphviz(dtc, out_file=None, #regr_1 是对应分类器 feature_names=data.columns[:8], #对应特征的名字 class_names=data.columns[8], #对应类别的名字 filled=True, rounded=True, special_characters=True) graph = pydotplus.graph_from_dot_data(dot_data) graph.write_png('C:/Users/86183/Desktop/data/example.png') #保存图像 Image(graph.create_png())
结果
标签:plt,cm,神经网络,test,import,model,data,决策树 来源: https://www.cnblogs.com/xieyuhua/p/16063584.html