opencv基本图像处理
作者:互联网
灰度图
import cv2 #opencv读取的格式是BGR import numpy as np import matplotlib.pyplot as plt#Matplotlib是RGB %matplotlib inline img=cv2.imread('dog.jpg') img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) img_gray.shape
(1279, 1706)cv2.imshow("img_gray", img_gray) cv2.waitKey(0) cv2.destroyAllWindows()
HSV
- H - 色调(主波长)。
- S - 饱和度(纯度/颜色的阴影)。
- V值(强度)
hsv=cv2.cvtColor(img,cv2.COLOR_BGR2HSV) cv2.imshow("hsv", hsv) cv2.waitKey(0) cv2.destroyAllWindows()
图像阈值
ret, dst = cv2.threshold(src, thresh, maxval, type)
src: 输入图,只能输入单通道图像,通常来说为灰度图
dst: 输出图
thresh: 阈值
maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV
cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0
cv2.THRESH_BINARY_INV THRESH_BINARY的反转
cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变
cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0
cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转
ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)#大于127的全部为白,<127的为黑 ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)#对上面的方法进行反转 ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)#>127的像素值就等于127 ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO) ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV) titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV'] images = [img, thresh1, thresh2, thresh3, thresh4, thresh5] for i in range(6): plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray') plt.title(titles[i]) plt.xticks([]), plt.yticks([]) plt.show()
图像平滑
img = cv2.imread('lenaNoise.png') cv2.imshow('img', img) cv2.waitKey(0) cv2.destroyAllWindows()
# 均值滤波 # 简单的平均卷积操作 blur = cv2.blur(img, (3, 3)) cv2.imshow('blur', blur) cv2.waitKey(0) cv2.destroyAllWindows()
# 方框滤波 # 基本和均值一样,可以选择归一化 box = cv2.boxFilter(img,-1,(3,3), normalize=True) cv2.imshow('box', box) cv2.waitKey(0) cv2.destroyAllWindows()
# 方框滤波 # 基本和均值一样,可以选择归一化,容易越界 变成白色像素点 box = cv2.boxFilter(img,-1,(3,3), normalize=False) cv2.imshow('box', box) cv2.waitKey(0) cv2.destroyAllWindows()
# 高斯滤波 # 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的 aussian = cv2.GaussianBlur(img, (5, 5), 1) cv2.imshow('aussian', aussian) cv2.waitKey(0) cv2.destroyAllWindows()
# 展示所有的 res = np.hstack((blur,aussian,median)) print (res) cv2.imshow('median vs average', res) cv2.waitKey(0) cv2.destroyAllWindows()
kernel = np.ones((3,3),np.uint8) erosion = cv2.erode(img,kernel,iterations = 1) cv2.imshow('erosion', erosion) cv2.waitKey(0) cv2.destroyAllWindows()
形态学-腐蚀操作
img = cv2.imread('AR.png') cv2.imshow('img', img) cv2.waitKey(0) cv2.destroyAllWindows()
kernel = np.ones((3,3),np.uint8) erosion = cv2.erode(img,kernel,iterations = 1) cv2.imshow('erosion', erosion) cv2.waitKey(0) cv2.destroyAllWindows()
形态学-膨胀操作
img = cv2.imread('AR.png') cv2.imshow('img', img) cv2.waitKey(0) cv2.destroyAllWindows()
kernel = np.ones((3,3),np.uint8) dige_erosion = cv2.erode(img,kernel,iterations = 1) cv2.imshow('erosion', erosion) cv2.waitKey(0) cv2.destroyAllWindows()
kernel = np.ones((3,3),np.uint8) dige_dilate = cv2.dilate(dige_erosion,kernel,iterations = 1) cv2.imshow('dilate', dige_dilate) cv2.waitKey(0) cv2.destroyAllWindows()
开运算与闭运算
# 开:先腐蚀,再膨胀 img = cv2.imread('AR.png') kernel = np.ones((5,5),np.uint8) opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel) cv2.imshow('opening', opening) cv2.waitKey(0) cv2.destroyAllWindows()
# 闭:先膨胀,再腐蚀 img = cv2.imread('AR.png') kernel = np.ones((5,5),np.uint8) closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel) cv2.imshow('closing', closing) cv2.waitKey(0) cv2.destroyAllWindows()
梯度运算
# 梯度=膨胀-腐蚀 pie = cv2.imread('pie.png') kernel = np.ones((7,7),np.uint8) dilate = cv2.dilate(pie,kernel,iterations = 5) erosion = cv2.erode(pie,kernel,iterations = 5) res = np.hstack((dilate,erosion)) cv2.imshow('res', res) cv2.waitKey(0) cv2.destroyAllWindows()
gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel) cv2.imshow('gradient', gradient) cv2.waitKey(0) cv2.destroyAllWindows()
图像梯度-Sobel算子
img = cv2.imread('pie.png',cv2.IMREAD_GRAYSCALE) cv2.imshow("img",img) cv2.waitKey() cv2.destroyAllWindows()
dst = cv2.Sobel(src, ddepth, dx, dy, ksize)
- ddepth:图像的深度
- dx和dy分别表示水平和竖直方向
- ksize是Sobel算子的大小
def cv_show(img,name): cv2.imshow(name,img) cv2.waitKey() cv2.destroyAllWindows()
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3) cv_show(sobelx,'sobelx')
白到黑是正数,黑到白就是负数了,所有的负数会被截断成0,所以要取绝对值
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3) sobelx = cv2.convertScaleAbs(sobelx) cv_show(sobelx,'sobelx')
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3) sobely = cv2.convertScaleAbs(sobely) cv_show(sobely,'sobely')
分别计算x和y,再求和
sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0) cv_show(sobelxy,'sobelxy')
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE) cv_show(img,'img')
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE) sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3) sobelx = cv2.convertScaleAbs(sobelx) sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3) sobely = cv2.convertScaleAbs(sobely) sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0) cv_show(sobelxy,'sobelxy')
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3) sobelxy = cv2.convertScaleAbs(sobelxy) cv_show(sobelxy,'sobelxy')
图像梯度-Scharr算子
图像梯度-laplacian算子
#不同算子的差异 img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE) sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3) sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3) sobelx = cv2.convertScaleAbs(sobelx) sobely = cv2.convertScaleAbs(sobely) sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0) scharrx = cv2.Scharr(img,cv2.CV_64F,1,0) scharry = cv2.Scharr(img,cv2.CV_64F,0,1) scharrx = cv2.convertScaleAbs(scharrx) scharry = cv2.convertScaleAbs(scharry) scharrxy = cv2.addWeighted(scharrx,0.5,scharry,0.5,0) laplacian = cv2.Laplacian(img,cv2.CV_64F) laplacian = cv2.convertScaleAbs(laplacian) res = np.hstack((sobelxy,scharrxy,laplacian)) cv_show(res,'res')
Canny边缘检测
1) 使用高斯滤波器,以平滑图像,滤除噪声。
2) 计算图像中每个像素点的梯度强度和方向。
3) 应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应。
4) 应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。
5) 通过抑制孤立的弱边缘最终完成边缘检测。
1:高斯滤波器
2:梯度和方向
3:非极大值抑制
img=cv2.imread("lena.jpg",cv2.IMREAD_GRAYSCALE) v1=cv2.Canny(img,80,150)#minVal=80 maxVal=150 v2=cv2.Canny(img,50,100) res = np.hstack((v1,v2)) cv_show(res,'res')
4:双阈值检测
img=cv2.imread("lena.jpg",cv2.IMREAD_GRAYSCALE) v1=cv2.Canny(img,80,150)#minVal=80 maxVal=150 v2=cv2.Canny(img,50,100) res = np.hstack((v1,v2)) cv_show(res,'res')
img=cv2.imread("car.png",cv2.IMREAD_GRAYSCALE) v1=cv2.Canny(img,120,250) v2=cv2.Canny(img,50,100) res = np.hstack((v1,v2)) cv_show(res,'res')
图像金字塔
- 高斯金字塔
- 拉普拉斯金字塔
高斯金字塔:向下采样方法(缩小)
高斯金字塔:向上采样方法(放大)
img=cv2.imread("ting.jpg") cv_show(img,'img') print (img.shape)
up=cv2.pyrUp(img) cv_show(up,'up') print (up.shape)
down=cv2.pyrDown(img) cv_show(down,'down') print (down.shape)
up2=cv2.pyrUp(up) cv_show(up2,'up2') print (up2.shape)
up=cv2.pyrUp(img) up_down=cv2.pyrDown(up) cv_show(up_down,'up_down')
cv_show(np.hstack((img,up_down)),'up_down')
up=cv2.pyrUp(img) up_down=cv2.pyrDown(up) cv_show(img-up_down,'img-up_down')
拉普拉斯金字塔
图像轮廓
cv2.findContours(img,mode,method)
mode:轮廓检索模式
- RETR_EXTERNAL :只检索最外面的轮廓;
- RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;
- RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
- RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次;
method:轮廓逼近方法
- CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。
- CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。
为了更高的准确率,使用二值图像。
img = cv2.imread('contours.png') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) cv_show(thresh,'thresh')
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
#传入绘制图像,轮廓,轮廓索引,颜色模式,线条厚度 # 注意需要copy,要不原图会变。。。 draw_img = img.copy() res = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 2) cv_show(res,'res')
draw_img = img.copy() res = cv2.drawContours(draw_img, contours, 0, (0, 0, 255), 2) cv_show(res,'res')
轮廓特征
cnt = contours[0]
#面积 cv2.contourArea(cnt)
8500.5#周长,True表示闭合的 cv2.arcLength(cnt,True)
437.9482651948929轮廓近似
img = cv2.imread('contours2.png') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) cnt = contours[0] draw_img = img.copy() res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2) cv_show(res,'res')
img = cv2.imread('contours.png') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) cnt = contours[0] x,y,w,h = cv2.boundingRect(cnt) img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2) cv_show(img,'img')
epsilon = 0.15*cv2.arcLength(cnt,True) approx = cv2.approxPolyDP(cnt,epsilon,True) draw_img = img.copy() res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2) cv_show(res,'res')
边界矩形
img = cv2.imread('contours.png') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) cnt = contours[0] x,y,w,h = cv2.boundingRect(cnt) img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2) cv_show(img,'img')
area = cv2.contourArea(cnt) x, y, w, h = cv2.boundingRect(cnt) rect_area = w * h extent = float(area) / rect_area print ('轮廓面积与边界矩形比',extent)
轮廓面积与边界矩形比 0.5154317244724715(x,y),radius = cv2.minEnclosingCircle(cnt) center = (int(x),int(y)) radius = int(radius) img = cv2.circle(img,center,radius,(0,255,0),2) cv_show(img,'img')
标签:基本,img,show,res,cv2,opencv,图像处理,np,cv 来源: https://blog.csdn.net/weixin_53660567/article/details/123642967