十六、kafka消费者之SyncGroup(一)
作者:互联网
这部分主要来说明消费者对协议的处理。
各个消费者都可设置partition.assignment.strategy(分区分配策略),服务端是如何处理的呢?
这块的代码要追溯到joinGroup请求结束,通过前面的源码分析我们知道joinGroup主要是判断是否发起rebalance以及等待其他组成员加入组,而在所有成员加入或者RebalanceTimeout
之后会调用onCompleteJoin方法,代码如下。
def onCompleteJoin(group: GroupMetadata): Unit = {
//1.1 针对动态成员的处理
group.inLock {
group.notYetRejoinedMembers.filterNot(_.isStaticMember) foreach { failedMember =>
removeHeartbeatForLeavingMember(group, failedMember)
group.remove(failedMember.memberId)
group.removeStaticMember(failedMember.groupInstanceId)
}
if (group.is(Dead)) {
info(s"Group ${group.groupId} is dead, skipping rebalance stage")
//leader没有rejoin且没有member能选,则group.maybeElectNewJoinedLeader返回false,我们需要再次延时。通过maybeElectNewJoinedLeader选出leader
} else if (!group.maybeElectNewJoinedLeader() && group.allMembers.nonEmpty) {
// If all members are not rejoining, we will postpone the completion
// of rebalance preparing stage, and send out another delayed operation
// until session timeout removes all the non-responsive members.
error(s"Group ${group.groupId} could not complete rebalance because no members rejoined")
joinPurgatory.tryCompleteElseWatch(
new DelayedJoin(this, group, group.rebalanceTimeoutMs),
Seq(GroupKey(group.groupId)))
} else {
//1.2 状态转为CompletingRebalance,投票选择协议,选择票数最多的那个
group.initNextGeneration()
if (group.is(Empty)) {
info(s"Group ${group.groupId} with generation ${group.generationId} is now empty " +
s"(${Topic.GROUP_METADATA_TOPIC_NAME}-${partitionFor(group.groupId)})")
groupManager.storeGroup(group, Map.empty, error => {
if (error != Errors.NONE) {
// we failed to write the empty group metadata. If the broker fails before another rebalance,
// the previous generation written to the log will become active again (and most likely timeout).
// This should be safe since there are no active members in an empty generation, so we just warn.
warn(s"Failed to write empty metadata for group ${group.groupId}: ${error.message}")
}
})
} else {
//1.3 选举完成后就返回
// trigger the awaiting join group response callback for all the members after rebalancing
for (member <- group.allMemberMetadata) {
val joinResult = JoinGroupResult(
members = if (group.isLeader(member.memberId)) {
group.currentMemberMetadata
} else {
List.empty
},
memberId = member.memberId,
generationId = group.generationId,
protocolType = group.protocolType,
protocolName = group.protocolName,
leaderId = group.leaderOrNull,
error = Errors.NONE)
group.maybeInvokeJoinCallback(member, joinResult)
completeAndScheduleNextHeartbeatExpiration(group, member)
member.isNew = false
}
}
}
}
}
针对动态成员的处理
这是一个与前面关联的点,在前面一篇的案例中我们知道如果是静态成员会拥有更长的session时间,而动态成员则是在断连之后第一次Rebalance时就剔除掉下线的member,处理就是在1.1的
代码中。在这里会过滤掉静态成员,将没有加入组的成员移除掉。
group状态转为CompletingRebalance,投票选举协议 kafka.coordinator.group.GroupMetadata#initNextGeneration
在initNextGeneration方法中可以看到会对generationId自增加一,generationId相当于group的纪元,每次发生Rebalance都会自增。接着是设置protocolName,针对选举协议的部分就是在Some(selectProtocol)中。
def initNextGeneration() = {
if (members.nonEmpty) {
generationId += 1
protocolName = Some(selectProtocol)
subscribedTopics = computeSubscribedTopics()
transitionTo(CompletingRebalance)
} else {
generationId += 1
protocolName = None
subscribedTopics = computeSubscribedTopics()
transitionTo(Empty)
}
receivedConsumerOffsetCommits = false
receivedTransactionalOffsetCommits = false
}
对于selectProtocol这段代码还挺好理解的,就是对所有的member设置的协议投票,取票数最多的协议,这个代码逻辑也与很多资料说的相符,但针对协议的处理只是简单这样吗?
大家可以想象一个case:如果有四个消费者,其中三个都设置的StickyAssignor,而剩的这个设置的CooperativeStickyAssignor,正好剩的这个被选为leader会发生什么呢?
(前面分析过,服务端选择消费者leader也很随意,就是取member的第一个)。
def selectProtocol: String = {
if (members.isEmpty)
throw new IllegalStateException("Cannot select protocol for empty group")
// select the protocol for this group which is supported by all members
val candidates = candidateProtocols
// let each member vote for one of the protocols and choose the one with the most votes
val votes: List[(String, Int)] = allMemberMetadata
.map(_.vote(candidates))
.groupBy(identity)
.mapValues(_.size)
.toList
votes.maxBy(_._2)._1
}
带着上面的疑问我们来测试一下
- 准备三个消费者:
消费者1:设置StickyAssignor
消费者2:设置StickyAssignor
消费者3:设置CooperativeStickyAssignor - 测试结果:
消费者3会收到一个异常Exception in thread “main” org.apache.kafka.common.errors.InconsistentGroupProtocolException: The group member’s supported protocols are incompatible with those of existing members or first group member tried to join with empty protocol type or empty protocol list.
- 抛出此异常的代码如下,memberProtocolType就是customer,memberProtocols即为消费者设置的protocols,memberProtocols.exists(supportedProtocols
(_) == members.size)是scala的语法,supportedProtocols是Map结构,key为protocols,value为member中对应protocol
的个数,这段代码意思是说如果memberProtocols中存在supportedProtocols中包含,且对应的value值等于member的个数,则为true,反之为false
。也就是说如果第一个加入组的消费者设置了两个协议,则这两个协议的value值都为1,而第二个加入组的消费者就必须要包含其中一个协议,给其中一个协议的value加1,然后第三个消费者也必须包含前面加1
的那个协议,否则抛异常。所以,实际上为协议投票并没有前面说的那么民主,在加入组时会针对协议做校验,防止最后选择的leader没有这个协议。刚开始我想的是按照这个设定的话,那每次加入组的消费者都必须包含与member
大小相等的协议的话,那后面针对协议再投票是不是没有必要了?直接取跟memberSize相等的协议不行吗?并不是这样,经过测试同一个消费者还可以为同一个协议投两次票,毕竟protocols的类型是List,然而有一个case
,如果第一个消费者只为StickyAssignor投两次票,第二个消费者只投一次,则也会抛InconsistentGroupProtocolException
,这种设计看似高大上,实际有种自己跟自己玩然后没啥意思的感觉,我也不继续深究了。
def supportsProtocols(memberProtocolType: String, memberProtocols: Set[String]) = {
if (is(Empty))
!memberProtocolType.isEmpty && memberProtocols.nonEmpty
else
protocolType.contains(memberProtocolType) && memberProtocols.exists(supportedProtocols(_) == members.size)
}
joinGroup返回处理
对于成为leader的消费者,服务端会返回成员信息,其他的则返回空,返回参数样例如下
- 成为leader的消费者
JoinGroupResponseData(throttleTimeMs=0, errorCode=0, generationId=3, protocolType=‘consumer’, protocolName=‘sticky’, leader=‘mykafka-group_4_1-d563db3b-0fcd-4ce8-8e65-12a663dba0f7’, memberId=‘mykafka-group_4_1-d563db3b-0fcd-4ce8-8e65-12a663dba0f7’, members=[JoinGroupResponseMember(memberId=‘mykafka-group_4_2-4c364a51-2d52-446f-b4d4-2b61ae3738c0’, groupInstanceId=null, metadata=[0, 1, 0, 0, 0, 1, 0, 7, 116, 111, 112, 105, 99, 95, 49, -1, -1, -1, -1, 0, 0, 0, 0]), JoinGroupResponseMember(memberId=‘mykafka-group_4_1-d563db3b-0fcd-4ce8-8e65-12a663dba0f7’, groupInstanceId=null, metadata=[0, 1, 0, 0, 0, 1, 0, 7, 116, 111, 112, 105, 99, 95, 49, -1, -1, -1, -1, 0, 0, 0, 0])])
- 其他消费者
JoinGroupResponseData(throttleTimeMs=0, errorCode=0, generationId=3, protocolType=‘consumer’, protocolName=‘sticky’, leader=‘mykafka-group_4_1-d563db3b-0fcd-4ce8-8e65-12a663dba0f7’, memberId=‘mykafka-group_4_2-4c364a51-2d52-446f-b4d4-2b61ae3738c0’, members=[])
收到策略之后消费者是如何处理的呢?
在发送joinGroup请求之后有给response设置处理类JoinGroupResponseHandler,最终返回的是JoinGroupResponseHandler
处理之后的处理结果,我们来看JoinGroupResponseHandler中是如何处理的。
if (error == Errors.NONE) {
if (isProtocolTypeInconsistent(joinResponse.data().protocolType())) {
log.debug("JoinGroup failed due to inconsistent Protocol Type, received {} but expected {}",
joinResponse.data().protocolType(), protocolType());
future.raise(Errors.INCONSISTENT_GROUP_PROTOCOL);
} else {
log.info("Received successful JoinGroup response: {}", joinResponse);
sensors.joinSensor.record(response.requestLatencyMs());
synchronized (AbstractCoordinator.this) {
if (state != MemberState.REBALANCING) {
// if the consumer was woken up before a rebalance completes, we may have already left
// the group. In this case, we do not want to continue with the sync group.
future.raise(new UnjoinedGroupException());
} else {
//根据返回参数的回调来做处理
AbstractCoordinator.this.generation = new Generation(
joinResponse.data().generationId(),
joinResponse.data().memberId(), joinResponse.data().protocolName());
//针对是否是leader分开处理
if (joinResponse.isLeader()) {
onJoinLeader(joinResponse).chain(future);
} else {
onJoinFollower().chain(future);
}
}
}
}
}
针对leader的处理
根据投票决定的分配规则分配分区,分配结束后发送SyncGroupRequest请求,在方法performAssignment中还会更新subscriptionState中的groupSubscription
及subscription,以及org.apache.kafka.clients.consumer.internals.ConsumerCoordinator中的 assignmentSnapshot以及
metadataSnapshot
private RequestFuture<ByteBuffer> onJoinLeader(JoinGroupResponse joinResponse) {
try {
// perform the leader synchronization and send back the assignment for the group
//根据分区分配策略来分配组成员处理的分区
Map<String, ByteBuffer> groupAssignment = performAssignment(joinResponse.data().leader(), joinResponse.data().protocolName(),
joinResponse.data().members());
List<SyncGroupRequestData.SyncGroupRequestAssignment> groupAssignmentList = new ArrayList<>();
for (Map.Entry<String, ByteBuffer> assignment : groupAssignment.entrySet()) {
groupAssignmentList.add(new SyncGroupRequestData.SyncGroupRequestAssignment()
.setMemberId(assignment.getKey())
.setAssignment(Utils.toArray(assignment.getValue()))
);
}
SyncGroupRequest.Builder requestBuilder =
new SyncGroupRequest.Builder(
new SyncGroupRequestData()
.setGroupId(rebalanceConfig.groupId)
.setMemberId(generation.memberId)
.setProtocolType(protocolType())
.setProtocolName(generation.protocolName)
.setGroupInstanceId(this.rebalanceConfig.groupInstanceId.orElse(null))
.setGenerationId(generation.generationId)
.setAssignments(groupAssignmentList)
);
log.debug("Sending leader SyncGroup to coordinator {} at generation {}: {}", this.coordinator, this.generation, requestBuilder);
return sendSyncGroupRequest(requestBuilder);
} catch (RuntimeException e) {
return RequestFuture.failure(e);
}
}
针对follower的处理
针对follower就直接发送SyncGroupRequest
private RequestFuture<ByteBuffer> onJoinFollower() {
// send follower's sync group with an empty assignment
SyncGroupRequest.Builder requestBuilder =
new SyncGroupRequest.Builder(
new SyncGroupRequestData()
.setGroupId(rebalanceConfig.groupId)
.setMemberId(generation.memberId)
.setProtocolType(protocolType())
.setProtocolName(generation.protocolName)
.setGroupInstanceId(this.rebalanceConfig.groupInstanceId.orElse(null))
.setGenerationId(generation.generationId)
.setAssignments(Collections.emptyList())
);
log.debug("Sending follower SyncGroup to coordinator {} at generation {}: {}", this.coordinator, this.generation, requestBuilder);
return sendSyncGroupRequest(requestBuilder);
}
总结
这部分到发送同步数据请求这里就结束了,下一篇会来继续分析发送同步请求之后做的事,以及针对四个分配规则来深入分析
标签:group,generation,十六,kafka,member,members,joinResponse,leader,SyncGroup 来源: https://blog.csdn.net/qq_34306010/article/details/123623887