大数据系列-SPARK-STREAMING流数据window
作者:互联网
大数据系列-SPARK-STREAMING流数据window
package com.test
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
//window
object SparkStreamingWindow {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setAppName("SparkStreamingWindow").setMaster("local[*]")
val streamingContext = new StreamingContext(sparkConf, Seconds(5) /*采集周期*/)
streamingContext.checkpoint("data/cpDir")
val dstream: ReceiverInputDStream[String] = streamingContext.socketTextStream("localhost", 8600)
val wordToMap = dstream.map((_, 1))
//window的窗口范围是采集周期的整倍 例 10 = 5 * 2
//默认window的滑动步长是采集周期,有重叠
val windowDStream: DStream[(String, Int)] = wordToMap.window(Seconds(10) /*范围*/ , Seconds(10) /*步长*/)
windowDStream.reduceByKey(_ + _).print
//窗口范围>步长时减少重复计算
wordToMap.reduceByKeyAndWindow(
(x: Int, y: Int) => {
x + y
},
(x: Int, y: Int) => {//去重
x - y
},
Seconds(10) /*范围*/ ,
Seconds(5) /*步长*/
).print()
streamingContext.start()
streamingContext.awaitTermination()
}
}
标签:Int,val,Seconds,步长,STREAMING,window,streamingContext,SPARK 来源: https://blog.csdn.net/hudongdong2020/article/details/123621261