bp神经网络
作者:互联网
import math from pandas import DataFrame def sigmoid(x):#激活函数 return 1/(1+math.exp(-x)) f = open(r"data.txt") line = f.readline() data_list = [] while line: num = list(map(float,line.split(','))) data_list.append(num) line = f.readline() f.close() x1 = data_list[0] x2 = data_list[1] y = data_list[2] yita = 0.1 for i in range(0,9): #中间层神经元输入和输出层神经元输入 Net_in = DataFrame(0.6,index=['input1','input2','theata'],columns=['a']) Out_in = DataFrame(0,index=['input1','input2','input3','input4','theata'],columns=['a']) Net_in.iloc[0] = x1[i] Net_in.iloc[1] = x2[i] Net_in.iloc[2,0] = -1 Out_in.iloc[4,0] = -1 #中间层和输出层神经元权值 W_mid=DataFrame(0.5,index=['input1','input2','theata'],columns=['mid1','mid2','mid3','mid4']) W_out=DataFrame(0.5,index=['input1','input2','input3','input4','theata'],columns=['a']) W_mid_delta=DataFrame(0,index=['input1','input2','theata'],columns=['mid1','mid2','mid3','mid4']) W_out_delta=DataFrame(0,index=['input1','input2','input3','input4','theata'],columns=['a']) #中间层的输出 for i in range(0,4): Out_in.iloc[i,0] = sigmoid(sum(W_mid.iloc[:,i]*Net_in.iloc[:,0])) #输出层的输出/网络输出 res = sigmoid(sum(Out_in.iloc[:,0]*W_out.iloc[:,0])) error = abs(res-y[i]) #输出层权值变化量 W_out_delta.iloc[:,0] = yita*res*(1-res)*(y[i]-res)*Out_in.iloc[:,0] W_out_delta.iloc[4,0] = -(yita*res*(1-res)*(y[i]-res)) W_out = W_out + W_out_delta #输出层权值更新 #中间层权值变化量 for i in range(0,4): W_mid_delta.iloc[:,i] = yita*Out_in.iloc[i,0]*(1-Out_in.iloc[i,0])*W_out.iloc[i,0]*res*(1-res)*(y[i]-res)*Net_in.iloc[:,0] W_mid_delta.iloc[2,i] = -(yita*Out_in.iloc[i,0]*(1-Out_in.iloc[i,0])*W_out.iloc[i,0]*res*(1-res)*(y[i]-res)) W_mid = W_mid + W_mid_delta #中间层权值更新 new_x1 = [0.38, 0.29] new_x2 = [0.49, 0.47] for i in range(0,2): Net_in = DataFrame(0.6,index=['input1','input2','theata'],columns=['a']) Out_in = DataFrame(0,index=['input1','input2','input3','input4','theata'],columns=['a']) Net_in.iloc[0] = new_x1[i] Net_in.iloc[1] = new_x2[i] Net_in.iloc[2,0] = -1 Out_in.iloc[4,0] = -1 for i in range(0,4):#中间层的输出 Out_in.iloc[i,0] = sigmoid(sum(W_mid.iloc[:,i]*Net_in.iloc[:,0])) res = sigmoid(sum(Out_in.iloc[:,0]*W_out.iloc[:,0]))#输出层的输出 print(res)
import numpy as np import scipy.special import matplotlib.pyplot class NeuralNetwork(): def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate): #设置输入层节点,隐藏节点和输出层节点的数量 self.inodes = inputnodes self.hnodes = hiddennodes self.onodes = outputnodes #学习率设置 self.lr = learningrate #权重矩阵设置,正态分布 self.wih = np.random.normal(0.0, pow(self.hnodes,-0.5),(self.hnodes,self.inodes)) self.who = np.random.normal(0.0, pow(self.onodes,-0.5),(self.onodes,self.hnodes)) #激活函数设置,sigmoid函数 self.activation_function = lambda x: scipy.special.expit(x) pass def train(self,input_list,target_list): #转换输入输出列表到二维数组 inputs = np.array(input_list,ndmin=2).T targets = np.array(target_list,ndmin=2).T #计算到隐藏层的信号 hidden_inputs = np.dot(self.wih,inputs) #计算隐藏层输出的信号 hidden_outputs = self.activation_function(hidden_inputs) final_inputs = np.dot(self.who,hidden_outputs)#计算到输出层的信号 final_outputs = self.activation_function(final_inputs) output_errors = targets-final_outputs hidden_errors = np.dot(self.who.T,output_errors) #隐藏层和输出层权重更新 self.who+=self.lr*np.dot((output_errors*final_outputs*(1.0-final_outputs)),np.transpose(hidden_outputs)) #输入层和隐藏层权重更新 self.wih+=self.lr*np.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)),np.transpose(inputs)) pass def query(self,input_list): #转换输入列表到二维数组 inputs = np.array(input_list,ndmin=2).T #计算到隐藏层的信号 hidden_inputs = np.dot(self.wih,inputs) #计算隐藏层输出的信号 hidden_outputs = self.activation_function(hidden_inputs) #计算到输出层的信号 final_inputs = np.dot(self.who,hidden_outputs) final_outputs = self.activation_function(final_inputs) return final_outputs print('n') input_nodes = 2#设置每层节点个数 hidden_nodes = 20 output_nodes = 1 learning_rate = 0.1#设置学习率为0.1 n = NeuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate)#创建神经网络 training_data_file = open("data_tr.txt",'r') training_data_list = training_data_file.readlines() training_data_file.close() print(training_data_list[0]) #训练神经网络 for record in training_data_list: all_values = record.split(',') inputs = np.asfarray(all_values[0:2]) targets = np.zeros(output_nodes) targets[0] = all_values[2] n.train(inputs,targets) pass #读取测试文件 test_data_file = open("data_te.txt","r") test_data_list = test_data_file.readlines() #readlines()方法读取文件所有行,保存在一个列表list向量中,每行作为一个元素,但读取大文件会比较占内存 test_data_file.close() scorecard = [] total = 0 correct = 0 for record in test_data_list: total += 1 all_values = record.split(',') correct_label = float(all_values[2])#比较值 inputs = np.asfarray(all_values[0:2]) outputs = n.query(inputs) label = float(outputs) if(abs(label-correct_label)/correct_label<=0.3): scorecard.append(1) correct += 1 else: scorecard.append(0) print(scorecard) print('正确率:',(correct/total)*100,'%')
标签:inputs,self,list,神经网络,bp,np,iloc,data 来源: https://www.cnblogs.com/lijieying/p/16025983.html