其他分享
首页 > 其他分享> > PAPR论文阅读笔记2之On the distribution of the peak-to-average power ratio in OFDM signals

PAPR论文阅读笔记2之On the distribution of the peak-to-average power ratio in OFDM signals

作者:互联网

从(A.2)到(A.5):
x = 2 σ x 2 r cos ⁡ θ y = 2 σ x 2 r sin ⁡ θ x ˙ = 2 σ x 2 ( r ˙ cos ⁡ θ − r sin ⁡ θ θ ˙ ) y ˙ = 2 σ x 2 ( r ˙ sin ⁡ θ + r cos ⁡ θ θ ˙ ) \begin{aligned} &x=\sqrt{2\sigma_x^2}r\cos\theta\\ &y=\sqrt{2\sigma_x^2}r\sin\theta\\ &\dot x=\sqrt{2\sigma_x^2}(\dot r\cos\theta-r\sin\theta \dot \theta)\\ &\dot y=\sqrt{2\sigma_x^2}(\dot r\sin\theta+r\cos\theta \dot \theta) \end{aligned} ​x=2σx2​ ​rcosθy=2σx2​ ​rsinθx˙=2σx2​ ​(r˙cosθ−rsinθθ˙)y˙​=2σx2​ ​(r˙sinθ+rcosθθ˙)​
因此
d x d y = 2 σ x 2 r d r d θ d x ˙ d y ˙ = 2 σ x 2 r d r ˙ d θ ˙ + ∗ ∗ ∗ d x d y d x ˙ d y ˙ = ( 2 σ x 2 ) 2 r 2 d r d θ d r ˙ d θ ˙ \begin{aligned} &dxdy={2\sigma_x^2}rdrd\theta\\ &d\dot xd\dot y={2\sigma_x^2}rd\dot rd \dot \theta+***\\ &dxdyd\dot xd\dot y=({2\sigma_x^2})^2r^2drd\theta d\dot rd \dot \theta \end{aligned} ​dxdy=2σx2​rdrdθdx˙dy˙​=2σx2​rdr˙dθ˙+∗∗∗dxdydx˙dy˙​=(2σx2​)2r2drdθdr˙dθ˙​
这里 ∗ ∗ ∗ *** ∗∗∗ 表示前面已出现过的微分项,对最后的微分外积没有贡献。将变量代换到 (A.2)得到 (A.5)。
公式(A.5)到 (A.7)
∫ 0 2 π d θ ∫ − ∞ ∞ e − 1 K r 2 θ ˙ 2 d θ ˙ = 2 π π K r \int_0^{2\pi}d\theta\int_{-\infty}^{\infty} e^{-{1\over K}r^2\dot\theta^2}d\dot \theta=2\pi {\sqrt{\pi K}\over r} ∫02π​dθ∫−∞∞​e−K1​r2θ˙2dθ˙=2πrπK ​​
根据 (B.1)
∣ R ∣ = ( σ x 2 σ x ˙ 2 σ x ¨ 2 − σ x ˙ 6 ) 2 |R|=\left(\sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^6\right)^2 ∣R∣=(σx2​σx˙2​σx¨2​−σx˙6​)2
矩阵 R 是块对角阵,块的拟
R 1 − 1 = 1 σ x 2 σ x ˙ 2 σ x ¨ 2 − σ x ˙ 6 ( σ x ˙ 2 σ x ¨ 2 0 σ x ˙ 4 0 σ x 2 σ x ¨ 2 − σ x ˙ 4 0 σ x ˙ 4 0 σ x 2 σ x ˙ 2 ) R_1^{-1}={1\over \sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^6}\begin{pmatrix}\sigma_{\dot x}^2\sigma_{\ddot x}^2&0& \sigma_{\dot x}^4\\ 0& \sigma_{x}^2\sigma_{\ddot x}^2- \sigma_{\dot x}^4& 0 \\ \sigma_{\dot x}^4&0& \sigma_x^2\sigma_{\dot x}^2 \end{pmatrix} R1−1​=σx2​σx˙2​σx¨2​−σx˙6​1​⎝⎛​σx˙2​σx¨2​0σx˙4​​0σx2​σx¨2​−σx˙4​0​σx˙4​0σx2​σx˙2​​⎠⎞​

x = 2 σ x 2 r cos ⁡ θ y = 2 σ x 2 r sin ⁡ θ x ˙ = 2 σ x 2 ( r ˙ cos ⁡ θ − r sin ⁡ θ θ ˙ ) y ˙ = 2 σ x 2 ( r ˙ sin ⁡ θ + r cos ⁡ θ θ ˙ ) x ¨ = 2 σ x 2 ( r ¨ cos ⁡ θ − r ˙ sin ⁡ θ θ ˙ − r ˙ sin ⁡ θ θ ˙ − r cos ⁡ θ θ ˙ 2 − r sin ⁡ θ θ ¨ ) y ¨ = 2 σ x 2 ( r ¨ sin ⁡ θ + r ˙ cos ⁡ θ θ ˙ + r ˙ cos ⁡ θ θ ˙ − r sin ⁡ θ θ ˙ 2 + r cos ⁡ θ θ ¨ ) \begin{aligned} &x=\sqrt{2\sigma_x^2}r\cos\theta\\ &y=\sqrt{2\sigma_x^2}r\sin\theta\\ &\dot x=\sqrt{2\sigma_x^2}(\dot r\cos\theta-r\sin\theta \dot \theta)\\ &\dot y=\sqrt{2\sigma_x^2}(\dot r\sin\theta+r\cos\theta \dot \theta)\\ &\ddot x=\sqrt{2\sigma_x^2}(\ddot r\cos\theta-\dot r\sin\theta \dot \theta- \dot r\sin\theta \dot \theta-r\cos\theta \dot \theta^2-r\sin\theta \ddot \theta)\\ &\ddot y=\sqrt{2\sigma_x^2}(\ddot r\sin\theta+\dot r\cos\theta \dot \theta+ \dot r\cos\theta \dot \theta-r\sin\theta \dot \theta^2+r\cos\theta \ddot \theta) \end{aligned} ​x=2σx2​ ​rcosθy=2σx2​ ​rsinθx˙=2σx2​ ​(r˙cosθ−rsinθθ˙)y˙​=2σx2​ ​(r˙sinθ+rcosθθ˙)x¨=2σx2​ ​(r¨cosθ−r˙sinθθ˙−r˙sinθθ˙−rcosθθ˙2−rsinθθ¨)y¨​=2σx2​ ​(r¨sinθ+r˙cosθθ˙+r˙cosθθ˙−rsinθθ˙2+rcosθθ¨)​
因此
d x d y d x ˙ d y ˙ = ( 2 σ x 2 ) 2 r 2 d r d θ d r ˙ d θ ˙ d x ¨ d y ¨ = 2 σ x 2 r d r ¨ d θ ¨ + ∗ ∗ ∗ d x d y d x ˙ d y ˙ d x ¨ d y ¨ = ( 2 σ x 2 ) 3 r 3 d r d θ d r ˙ d d ˙ r ¨ d θ ¨ θ \begin{aligned} &dxdyd\dot xd\dot y=({2\sigma_x^2})^2r^2drd\theta d\dot rd \dot \theta\\ &d\ddot xd\ddot y=2\sigma_x^2 rd\ddot rd\ddot \theta+***\\ &dxdyd\dot xd\dot yd\ddot xd\ddot y=({2\sigma_x^2})^3r^3drd\theta d\dot rd \dot d\ddot rd\ddot \theta\theta\end{aligned} ​dxdydx˙dy˙​=(2σx2​)2r2drdθdr˙dθ˙dx¨dy¨​=2σx2​rdr¨dθ¨+∗∗∗dxdydx˙dy˙​dx¨dy¨​=(2σx2​)3r3drdθdr˙dd˙r¨dθ¨θ​
这里 ∗ ∗ ∗ *** ∗∗∗ 表示前面已出现过的微分项,对最后的微分外积没有贡献。
令 X = ( x , x ˙ , x ¨ , y , y ˙ , y ¨ ) ′ X=(x,\dot x, \ddot x, y,\dot y, \ddot y)' X=(x,x˙,x¨,y,y˙​,y¨​)′, 概率密度函数为
f ( x , x ˙ , x ¨ , y , y ˙ , y ¨ ) = 1 ( 2 π ) 3 ∣ R ∣ e − 1 2 X ′ R − 1 X (1) f(x,\dot x, \ddot x, y,\dot y, \ddot y)={1\over (2\pi)^3\sqrt{|R|}}e^{-{1\over 2}X'R^{-1}X}\tag 1 f(x,x˙,x¨,y,y˙​,y¨​)=(2π)3∣R∣ ​1​e−21​X′R−1X(1)
X ′ R − 1 X X'R^{-1}X X′R−1X 包含以下项:
1 σ x 2 σ x ˙ 2 σ x ¨ 2 − σ x ˙ 6 [ σ x ˙ 2 σ x ¨ 2 x 2 + σ x ˙ 4 x x ¨ + ( σ x 2 σ x ¨ 2 − σ x ˙ 4 ) x ˙ 2 + σ x ˙ 4 x x ¨ + σ x 2 σ x ˙ 2 x ¨ 2 ] 1 σ x 2 σ x ˙ 2 σ x ¨ 2 − σ x ˙ 6 [ σ x ˙ 2 σ x ¨ 2 y 2 + σ x ˙ 4 y y ¨ + ( σ x 2 σ x ¨ 2 − σ x ˙ 4 ) y ˙ 2 + σ x ˙ 4 y y ¨ + σ x 2 σ x ˙ 2 y ¨ 2 ] \begin{aligned} & {1\over \sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^6}[\sigma_{\dot x}^2\sigma_{\ddot x}^2x^2+\sigma_{\dot x}^4x\ddot x+(\sigma_{x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^4)\dot x^2+\sigma_{\dot x}^4x\ddot x+\sigma_{x}^2\sigma_{\dot x}^2\ddot x^2]\\ & {1\over \sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^6}[\sigma_{\dot x}^2\sigma_{\ddot x}^2y^2+\sigma_{\dot x}^4y\ddot y+(\sigma_{x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^4)\dot y^2+\sigma_{\dot x}^4y\ddot y+\sigma_{x}^2\sigma_{\dot x}^2\ddot y^2] \end{aligned} ​σx2​σx˙2​σx¨2​−σx˙6​1​[σx˙2​σx¨2​x2+σx˙4​xx¨+(σx2​σx¨2​−σx˙4​)x˙2+σx˙4​xx¨+σx2​σx˙2​x¨2]σx2​σx˙2​σx¨2​−σx˙6​1​[σx˙2​σx¨2​y2+σx˙4​yy¨​+(σx2​σx¨2​−σx˙4​)y˙​2+σx˙4​yy¨​+σx2​σx˙2​y¨​2]​
变量代换
x 2 + y 2 = 2 σ x 2 r 2 x ˙ 2 + y ˙ 2 = 2 σ x 2 ( r ˙ 2 + r 2 θ ˙ 2 ) x ¨ 2 + y ¨ 2 = 2 σ x 2 ( r ¨ 2 + 4 r ˙ 2 θ ˙ 2 + r 2 θ ˙ 4 + r 2 θ ¨ 2 − r r ¨ θ ˙ 2 + 4 r r ˙ θ ˙ θ ¨ ) x x ¨ + y y ¨ = 2 σ x 2 ( r r ¨ − r 2 θ ˙ 2 ) \begin{aligned} &x^2+y^2=2\sigma_x^2r^2\\ &\dot x^2+\dot y^2=2\sigma_x^2(\dot r^2+r^2\dot\theta^2)\\ &\ddot x^2+\ddot y^2=2\sigma_x^2(\ddot r^2+4\dot r^2\dot\theta^2+r^2\dot\theta^4+r^2\ddot\theta^2-r\ddot r\dot \theta^2+4r\dot r\dot\theta\ddot\theta)\\ &x\ddot x+y\ddot y=2\sigma_x^2(r\ddot r-r^2\dot\theta^2) \end{aligned} ​x2+y2=2σx2​r2x˙2+y˙​2=2σx2​(r˙2+r2θ˙2)x¨2+y¨​2=2σx2​(r¨2+4r˙2θ˙2+r2θ˙4+r2θ¨2−rr¨θ˙2+4rr˙θ˙θ¨)xx¨+yy¨​=2σx2​(rr¨−r2θ˙2)​
根据定义 M = σ x ˙ 4 σ x 2 σ x ¨ 2 − σ x ˙ 4 , K = σ x ˙ 2 σ x 2 , ϕ = θ ˙ K M ={\sigma_{\dot x}^4\over \sigma_{x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^4}, \quad K={\sigma_{\dot x}^2\over \sigma_{x}^2}, \quad \phi={\dot\theta\over \sqrt K} M=σx2​σx¨2​−σx˙4​σx˙4​​,K=σx2​σx˙2​​,ϕ=K ​θ˙​
(:论文中的 ϕ = K θ ˙ \phi=\sqrt K\dot\theta ϕ=K ​θ˙ 应该是笔误)
得到
σ x 2 σ x ˙ 2 σ x ¨ 2 σ x 2 σ x ˙ 2 σ x ¨ 2 − σ x ˙ 6 = M + 1 σ x 2 σ x ˙ 4 σ x 2 σ x ˙ 2 σ x ¨ 2 − σ x ˙ 6 = M K σ x 2 ( σ x 2 σ x ¨ 2 − σ x ˙ 4 ) σ x 2 σ x ˙ 2 σ x ¨ 2 − σ x ˙ 6 = 1 K σ x 4 σ x ˙ 2 σ x 2 σ x ˙ 2 σ x ¨ 2 − σ x ˙ 6 = M K 2 \begin{aligned} & {\sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2\over \sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^6}=M+1\\ & {\sigma_x^2\sigma_{\dot x}^4\over \sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^6}={M\over K}\\ & {\sigma_x^2(\sigma_x^2\sigma_{\ddot x}^2-\sigma_{\dot x}^4)\over \sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^6}={1\over K}\\ & {\sigma_x^4\sigma_{\dot x}^2\over \sigma_x^2\sigma_{\dot x}^2\sigma_{\ddot x}^2-\sigma_{\dot x}^6}={M\over K^2} \end{aligned} ​σx2​σx˙2​σx¨2​−σx˙6​σx2​σx˙2​σx¨2​​=M+1σx2​σx˙2​σx¨2​−σx˙6​σx2​σx˙4​​=KM​σx2​σx˙2​σx¨2​−σx˙6​σx2​(σx2​σx¨2​−σx˙4​)​=K1​σx2​σx˙2​σx¨2​−σx˙6​σx4​σx˙2​​=K2M​​
1 2 X ′ R − 1 X = 1 2 σ x 2 [ ( M + 1 ) ( x 2 + y 2 ) + 2 M K ( x x ¨ + y y ¨ ) + 1 K ( x ˙ 2 + y ˙ 2 ) + M K 2 ( x ¨ 2 + y ¨ 2 ) ] = ( M + 1 ) r 2 + 2 M K ( r r ¨ − r 2 θ ˙ 2 ) + 1 K ( r ˙ 2 + r 2 θ ˙ 2 ) + M K 2 ( r ¨ 2 + 4 r ˙ 2 θ ˙ 2 + r 2 θ ˙ 4 + r 2 θ ¨ 2 − r r ¨ θ ˙ 2 + 4 r r ˙ θ ˙ θ ¨ ) = [ ( M + 1 ) + ( 1 − 2 M ) ϕ 2 + M ϕ 4 ] r 2 + 2 M K ( 1 − ϕ 2 ) r r ¨ + 1 K ( r ˙ 2 + M K r ¨ 2 ) + M K 2 ( 4 r ˙ 2 θ ˙ 2 + r 2 θ ¨ 2 + 4 r r ˙ θ ˙ θ ¨ ) (2) \begin{aligned} {1\over 2}X'R^{-1}X&={1\over 2\sigma_x^2}[(M+1)(x^2+y^2)+2{M\over K}(x\ddot x+y\ddot y)+{1\over K}(\dot x^2+\dot y^2)+{M\over K^2}(\ddot x^2+\ddot y^2)]\\ & =(M+1)r^2+{2M\over K}(r\ddot r-r^2\dot\theta^2)+{1\over K}(\dot r^2+r^2\dot\theta^2) \\&\quad\quad+{M\over K^2}(\ddot r^2+4\dot r^2\dot\theta^2+r^2\dot\theta^4+r^2\ddot\theta^2-r\ddot r\dot \theta^2+4r\dot r\dot\theta\ddot\theta)\\ & =[(M+1)+(1-2M)\phi^2+M\phi^4] r^2+{2M\over K}(1-\phi^2)r\ddot r+{1\over K}(\dot r^2+{M\over K}\ddot r^2) \\&\quad\quad+{M\over K^2}(4\dot r^2\dot\theta^2+r^2\ddot\theta^2+4r\dot r\dot\theta\ddot\theta)\end{aligned}\tag 2 21​X′R−1X​=2σx2​1​[(M+1)(x2+y2)+2KM​(xx¨+yy¨​)+K1​(x˙2+y˙​2)+K2M​(x¨2+y¨​2)]=(M+1)r2+K2M​(rr¨−r2θ˙2)+K1​(r˙2+r2θ˙2)+K2M​(r¨2+4r˙2θ˙2+r2θ˙4+r2θ¨2−rr¨θ˙2+4rr˙θ˙θ¨)=[(M+1)+(1−2M)ϕ2+Mϕ4]r2+K2M​(1−ϕ2)rr¨+K1​(r˙2+KM​r¨2)+K2M​(4r˙2θ˙2+r2θ¨2+4rr˙θ˙θ¨)​(2)
对最后一部分积分
∫ − ∞ ∞ e − M K 2 ( 4 r ˙ 2 θ ˙ 2 + r 2 θ ¨ 2 + 4 r r ˙ θ ˙ θ ¨ ) d θ ¨ = K π r M (3) \int_{-\infty}^{\infty}e^{-{M\over K^2}(4\dot r^2\dot\theta^2+r^2\ddot\theta^2+4r\dot r\dot\theta\ddot\theta)}d\ddot\theta={K\sqrt \pi\over r \sqrt M} \tag 3 ∫−∞∞​e−K2M​(4r˙2θ˙2+r2θ¨2+4rr˙θ˙θ¨)dθ¨=rM ​Kπ ​​(3)
将(2)(3)及积分变量雅可比代入(1)得到公式(B.2)
f ( r , r ˙ , r ¨ ) = ∫ 0 2 π d θ ∫ − ∞ ∞ ( 2 σ x 2 ) 3 r 3 ( 2 π ) 3 ∣ R ∣ K π r M e − T d θ ˙ = ∫ − ∞ ∞ 2 r 2 M ( K π ) 3 / 2 e − T d ϕ \begin{aligned}f(r,\dot r, \ddot r)=\int_0^{2\pi}d\theta\int_{-\infty}^\infty{(2\sigma_x^2)^3r^3\over (2\pi)^3\sqrt{|R|}}{K\sqrt \pi\over r \sqrt M}e^{-T}d\dot\theta=\int_{-\infty}^\infty{2r^2 \sqrt M\over (K\pi)^{3/2}}e^{-T}d\phi\\ \end{aligned} f(r,r˙,r¨)=∫02π​dθ∫−∞∞​(2π)3∣R∣ ​(2σx2​)3r3​rM ​Kπ ​​e−Tdθ˙=∫−∞∞​(Kπ)3/22r2M ​​e−Tdϕ​
这里 T = [ ( M + 1 ) + ( 1 − 2 M ) ϕ 2 + M ϕ 4 ] r 2 + 2 M K ( 1 − ϕ 2 ) r r ¨ + 1 K ( r ˙ 2 + M K r ¨ 2 ) T=[(M+1)+(1-2M)\phi^2+M\phi^4] r^2+{2M\over K}(1-\phi^2)r\ddot r+{1\over K}(\dot r^2+{M\over K}\ddot r^2) T=[(M+1)+(1−2M)ϕ2+Mϕ4]r2+K2M​(1−ϕ2)rr¨+K1​(r˙2+KM​r¨2).
从公式(B.2)到(B.5)
∫ − ∞ 0 − r ¨ e − 2 M K ( 1 − ϕ 2 ) u r ¨ − M K 2 r ¨ 2 d r ¨ = ∫ − ∞ 0 − r ¨ e − M ( r ¨ 2 K + ( 1 − ϕ 2 ) u ) 2 e M ( 1 − ϕ 2 ) 2 u 2 d r ¨ = e M ( 1 − ϕ 2 ) 2 u 2 ∫ − ∞ 0 − r ¨ e − M ( r ¨ 2 K + ( 1 − ϕ 2 ) u ) 2 d r ¨ = e M ( 1 − ϕ 2 ) 2 u 2 K 2 M ∫ − ∞ M ( 1 − ϕ 2 ) u [ − M ( r ¨ 2 K + ( 1 − ϕ 2 ) u ) + M ( 1 − ϕ 2 ) u ] ⋅ e − M ( r ¨ 2 K + ( 1 − ϕ 2 ) u ) 2 d [ M ( r ¨ 2 K + ( 1 − ϕ 2 ) u ) ] = e M ( 1 − ϕ 2 ) 2 u 2 K 2 M ∫ − ∞ M ( 1 − ϕ 2 ) u − x e − x 2 + M ( 1 − ϕ 2 ) u e − x 2 d x \begin{aligned}\int_{-\infty}^0 -\ddot re^{-{2M\over K}(1-\phi^2)u\ddot r-{M\over K^2}\ddot r^2}d\ddot r=& \int_{-\infty}^0 -\ddot re^{-M({\ddot r^2\over K}+(1-\phi^2)u)^2}e^{M(1-\phi^2)^2u^2}d\ddot r\\ =e^{M(1-\phi^2)^2u^2} &\int_{-\infty}^0 -\ddot re^{-M({\ddot r^2\over K}+(1-\phi^2)u)^2}d\ddot r\\ ={e^{M(1-\phi^2)^2u^2}K^2\over M} &\int_{-\infty}^{\sqrt M(1-\phi^2)u} \left[-\sqrt M({\ddot r^2\over K}+(1-\phi^2)u)+\sqrt M(1-\phi^2)u\right]\\&\cdot e^{-M({\ddot r^2\over K}+(1-\phi^2)u)^2}d\left[\sqrt M({\ddot r^2\over K}+(1-\phi^2)u)\right]\\ ={e^{M(1-\phi^2)^2u^2}K^2\over M} &\int_{-\infty}^{\sqrt M(1-\phi^2)u}-xe^{-x^2}+\sqrt M(1-\phi^2)ue^{-x^2}dx \\ \end{aligned} ∫−∞0​−r¨e−K2M​(1−ϕ2)ur¨−K2M​r¨2dr¨==eM(1−ϕ2)2u2=MeM(1−ϕ2)2u2K2​=MeM(1−ϕ2)2u2K2​​∫−∞0​−r¨e−M(Kr¨2​+(1−ϕ2)u)2eM(1−ϕ2)2u2dr¨∫−∞0​−r¨e−M(Kr¨2​+(1−ϕ2)u)2dr¨∫−∞M ​(1−ϕ2)u​[−M ​(Kr¨2​+(1−ϕ2)u)+M ​(1−ϕ2)u]⋅e−M(Kr¨2​+(1−ϕ2)u)2d[M ​(Kr¨2​+(1−ϕ2)u)]∫−∞M ​(1−ϕ2)u​−xe−x2+M ​(1−ϕ2)ue−x2dx​
Ref.
H. Ochiai and H. Imai, “On the distribution of the peak-to-average power ratio in OFDM signals,” IEEE Trans. Commun., vol. 49, pp. 282–289, Feb. 2001.

标签:ratio,OFDM,power,over,ddot,x2,theta,sigma,dot
来源: https://blog.csdn.net/wubyatseu/article/details/123582398