其他分享
首页 > 其他分享> > torch.optim optimizer函数

torch.optim optimizer函数

作者:互联网

class torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False)[source]

实现随机梯度下降算法(momentum可选)。

Nesterov动量基于On the importance of initialization and momentum in deep learning中的公式.

 

参数:

例子:

>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
>>> optimizer.zero_grad() #梯度清零
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()


optimizer.zero_grad()函数会遍历模型的所有参数,通过p.grad.detach_()方法截断反向传播的梯度流,再通过p.grad.zero_()函数将每个参数的梯度值设为0,即上一次的梯度记录被清空。

因为训练的过程通常使用mini-batch方法,所以如果不将梯度清零的话,梯度会与上一个batch的数据相关,因此该函数要写在反向传播和梯度下降之前。

 

step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

 

标签:float,optimizer,函数,optim,梯度,torch,grad,momentum
来源: https://www.cnblogs.com/h694879357/p/15979871.html