其他分享
首页 > 其他分享> > 如何理解端到端

如何理解端到端

作者:互联网

1.非端到端:

典型的自然语言处理(Natural Language Processing)过程:

分词->词性标注->句法分析->语义分析...直至得出结果。

多个独立步骤,每个步骤是一个独立的任务,其结果的好坏会影响到下一步骤,从而影响整个训练的结果,这是非端到端的。

非端到端输入的不是原始数据,而是原始数据中提取出来的特征。

特征提取的好坏异常关键,甚至比学习算法还重要,举个例子,对一系列人的数据分类,分类结果是性别,如果你提取的特征是头发的颜色,无论分类算法如何,分类效果都不会好,如果你提取的特征是头发的长短,这个特征就会好很多,但是还是会有错误,如果你提取了一个超强特征,比如染色体的数据,那你的分类基本就不会错了。

特征提取的好坏异常关键,甚至比学习算法还重要,举个例子,对一系列人的数据分类,分类结果是性别,如果你提取的特征是头发的颜色,无论分类算法如何,分类效果都不会好,如果你提取的特征是头发的长短,这个特征就会好很多,但是还是会有错误,如果你提取了一个超强特征,比如染色体的数据,那你的分类基本就不会错了。

这就意味着,特征需要足够的经验去设计,这在数据量越来越大的情况下也越来越困难。于是就出现了端到端网络,特征可以自己去学习,所以特征提取这一步也就融入到算法当中,不需要人来干预了。

2.端到端:

直到模型收敛或达到预期的效果才结束,这是端到端的。

两者相比,端到端的学习省去了在每一个独立学习任务执行之前所做的数据标注,为样本做标注的代价是昂贵的、易出错的。端到端指的是输入是原始数据,输出是最后的结果。

标签:提取,特征,分类,如何,算法,理解,特征提取,端到
来源: https://blog.csdn.net/qq_45055856/article/details/123234161