蓝桥杯 ALGO-985 幸运的店家(贪心)
作者:互联网
试题 算法训练 幸运的店家
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
炫炫开了一家商店,卖的货只有一个,XXX,XXX卖N元钱。有趣的是,世界上只有面值为3的幂的纸币,即纸币只有1元的、3元的、9元的。。。。,有一天,桥神来买XXX,可他没办法正好给出N元钱,而炫炫没法找零,于是他只好用他的钱凑出了一个比N大,并且最小的价值,交给了炫炫。炫炫想知道,他这次最多可以得到多少张纸币。
输入格式
一个数,N
输出格式
一个数,为答案
样例输入
4
样例输出
2
数据规模和约定
n<=10^17
思路:
-
答案必不使用1元,可证明:若需要使用若干1元,得到x,满足x > N。那么去掉1元,得到x1,可能满足
x1 >= N
,当x1 > N
,可知x不是最小,当x1 = N
,不符合题意。 -
3的幂都能由若干3表示,那么要取得最多,就要全部使用3组合(这应该就是贪心的地方)
-
分情况,若N不能被3整除,结果就是
N / 3 + 1
,若N能被3整除,则答案是n / 3 + 1
(将N的所有3因子除掉后得到n,即n满足3^k * n = N
)如果N能被3整除,那么全用3组合就不符合题意了,而可以用3的某次幂来组合,组合的次数就等于
n / 3 + 1
,例:12 = 3 x 4
,可以用 3 来组合4,即 3 + 3 , 那么就可以用3 x (3 + 3) = 9 + 9
组合 12则最复杂的情况也就是O(\(log_{3}n\))
要点:
- n<=10^17,使用 long long 来读
代码:
#include <iostream>
using namespace std;
typedef long long LL;
LL n, res;
int main (){
cin >> n;
if (n % 3) res = (n / 3) + 1;
else {
while (n % 3 == 0) n /= 3;
res = (n / 3) + 1;
}
cout << res << endl;
return 0;
}
吐槽:
这个用搜索的方法几乎不可能了吧,贪心快但是好难想哇pwp
标签:组合,res,XXX,985,蓝桥,ALGO,整除,x1,贪心 来源: https://www.cnblogs.com/mosqu1to/p/15913766.html