Elasticsearch
作者:互联网
第一章 Elasticsearch概述
1.1 开篇
结构化数据
结构化数据
半结构化数据
1.2 技术选型
Elasticsearch 是什么
The Elastic Stack, 包括 Elasticsearch、 Kibana、 Beats 和 Logstash(也称为 ELK Stack)。能够安全可靠地获取任何来源、任何格式的数据,然后实时地对数据进行搜索、分析和可视化。
Elaticsearch,简称为 ES, ES 是一个开源的高扩展的分布式全文搜索引擎, 是整个 ElasticStack 技术栈的核心。
它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理 PB 级别的数据。
elastic
英 [ɪˈlæstɪk] 美 [ɪˈlæstɪk]
n. 橡皮圈(或带);松紧带
adj. 橡皮圈(或带)的;有弹性的;有弹力的;灵活的;可改变的;可伸缩的
全文搜索引擎
Google,百度类的网站搜索,它们都是根据网页中的关键字生成索引,我们在搜索的时候输入关键字,它们会将该关键字即索引匹配到的所有网页返回;还有常见的项目中应用日志的搜索等等。对于这些非结构化的数据文本,关系型数据库搜索不是能很好的支持。
一般传统数据库,全文检索都实现的很鸡肋,因为一般也没人用数据库存文本字段。进行全文检索需要扫描整个表,如果数据量大的话即使对 SQL 的语法优化,也收效甚微。建立了索引,但是维护起来也很麻烦,对于 insert 和 update 操作都会重新构建索引。
基于以上原因可以分析得出,在一些生产环境中,使用常规的搜索方式,性能是非常差的:
- 搜索的数据对象是大量的非结构化的文本数据。
- 文件记录量达到数十万或数百万个甚至更多。
- 支持大量基于交互式文本的查询。
- 需求非常灵活的全文搜索查询。
- 对高度相关的搜索结果的有特殊需求,但是没有可用的关系数据库可以满足。
- 对不同记录类型、非文本数据操作或安全事务处理的需求相对较少的情况。为了解决结构化数据搜索和非结构化数据搜索性能问题,我们就需要专业,健壮,强大的全文搜索引擎 。
里说到的全文搜索引擎指的是目前广泛应用的主流搜索引擎。它的工作原理是计算机索引程序通过扫描文章中的每一个词,对每一个词建立一个索引,指明该词在文章中出现的次数和位置,当用户查询时,检索程序就根据事先建立的索引进行查找,并将查找的结果反馈给用户的检索方式。这个过程类似于通过字典中的检索字表查字的过程。
Elasticsearch 应用案例
- GitHub: 2013 年初,抛弃了 Solr,采取 Elasticsearch 来做 PB 级的搜索。 “GitHub 使用Elasticsearch 搜索 20TB 的数据,包括 13 亿文件和 1300 亿行代码”。
- 维基百科:启动以 Elasticsearch 为基础的核心搜索架构
- 百度:目前广泛使用 Elasticsearch 作为文本数据分析,采集百度所有服务器上的各类指标数据及用户自定义数据,通过对各种数据进行多维分析展示,辅助定位分析实例异常或业务层面异常。目前覆盖百度内部 20 多个业务线(包括云分析、网盟、预测、文库、直达号、钱包、 风控等),单集群最大 100 台机器, 200 个 ES 节点,每天导入 30TB+数据。
- 新浪:使用 Elas ticsearch 分析处理 32 亿条实时日志。
- 阿里:使用 Elasticsearch 构建日志采集和分析体系。
- Stack Overflow:解决 Bug 问题的网站,全英文,编程人员交流的网站。
第二章 Elasticsearch入门
2.1 环境准备
官方网址:https://www.elastic.co/cn/
官方文档:https://www.elastic.co/guide/index.html
Elasticsearch 7.8.0下载页面:https://www.elastic.co/cn/downloads/past-releases/elasticsearch-7-8-0
Windows 版的 Elasticsearch 压缩包,解压即安装完毕,解压后的 Elasticsearch 的目录结构如下 :
目录 | 含义 |
---|---|
bin | 可执行脚本目录 |
config | 配置目录 |
jdk | 内置 JDK 目录 |
lib | 类库 |
logs | 日志目录 |
modules | 模块目录 |
plugins | 插件目录 |
解压后,进入 bin 文件目录,点击 elasticsearch.bat 文件启动 ES 服务 。
注意: 9300 端口为 Elasticsearch 集群间组件的通信端口, 9200 端口为浏览器访问的 http协议 RESTful 端口。
打开浏览器,输入地址: http://localhost:9200,测试返回结果,返回结果如下:
{ "name" : "DESKTOP-LNJQ0VF", "cluster_name" : "elasticsearch", "cluster_uuid" : "nCZqBhfdT1-pw8Yas4QU9w", "version" : { "number" : "7.8.0", "build_flavor" : "default", "build_type" : "zip", "build_hash" : "757314695644ea9a1dc2fecd26d1a43856725e65", "build_date" : "2020-06-14T19:35:50.234439Z", "build_snapshot" : false, "lucene_version" : "8.5.1", "minimum_wire_compatibility_version" : "6.8.0", "minimum_index_compatibility_version" : "6.0.0-beta1" }, "tagline" : "You Know, for Search" }
2.2 RESTful & JSON
REST 指的是一组架构约束条件和原则。满足这些约束条件和原则的应用程序或设计就是 RESTful。 Web 应用程序最重要的 REST 原则是,客户端和服务器之间的交互在请求之间是无状态的。从客户端到服务器的每个请求都必须包含理解请求所必需的信息。如果服务器在请求之间的任何时间点重启,客户端不会得到通知。此外,无状态请求可以由任何可用服务器回答,这十分适合云计算之类的环境。客户端可以缓存数据以改进性能。
在服务器端,应用程序状态和功能可以分为各种资源。资源是一个有趣的概念实体,它向客户端公开。资源的例子有:应用程序对象、数据库记录、算法等等。每个资源都使用 URI(Universal Resource Identifier) 得到一个唯一的地址。所有资源都共享统一的接口,以便在客户端和服务器之间传输状态。使用的是标准的 HTTP 方法,比如 GET、 PUT、 POST 和DELETE。
在 REST 样式的 Web 服务中,每个资源都有一个地址。资源本身都是方法调用的目
标,方法列表对所有资源都是一样的。这些方法都是标准方法,包括 HTTP GET、 POST、PUT、 DELETE,还可能包括 HEAD 和 OPTIONS。简单的理解就是,如果想要访问互联网上的资源,就必须向资源所在的服务器发出请求,请求体中必须包含资源的网络路径, 以及对资源进行的操作(增删改查)。
REST 样式的 Web 服务若有返回结果,大多数以JSON字符串形式返回。
2.3 Postman客户端工具
如果直接通过浏览器向 Elasticsearch 服务器发请求,那么需要在发送的请求中包含
HTTP 标准的方法,而 HTTP 的大部分特性且仅支持 GET 和 POST 方法。所以为了能方便地进行客户端的访问,可以使用 Postman 软件Postman 是一款强大的网页调试工具,提供功能强大的 Web API 和 HTTP 请求调试。
软件功能强大,界面简洁明晰、操作方便快捷,设计得很人性化。 Postman 中文版能够发送任何类型的 HTTP 请求 (GET, HEAD, POST, PUT…),不仅能够表单提交,且可以附带任意类型请求体。
Postman下载页面 :https://www.postman.com/downloads/
2.4 倒排索引
正排索引(传统)
id | content |
---|---|
1001 | my name is zhang san |
1002 | my name is li si |
倒排索引
keyword | id |
---|---|
name | 1001, 1002 |
zhang | 1001 |
Elasticsearch 是面向文档型数据库,一条数据在这里就是一个文档。 为了方便大家理解,我们将 Elasticsearch 里存储文档数据和关系型数据库 MySQL 存储数据的概念进行一个类比
ES 里的 Index 可以看做一个库,而 Types 相当于表, Documents 则相当于表的行。这里 Types 的概念已经被逐渐弱化, Elasticsearch 6.X 中,一个 index 下已经只能包含一个type, Elasticsearch 7.X 中, Type 的概念已经被删除了。
2.5 索引
创建索引
对比关系型数据库,创建索引就等同于创建数据库。
在 Postman 中,向 ES 服务器发 PUT 请求 : http://127.0.0.1:9200/shopping
请求后,服务器返回响应:
{ "acknowledged": true,//响应结果 "shards_acknowledged": true,//分片结果 "index": "shopping"//索引名称 }
后台日志:
[2022-02-10T17:07:45,921][INFO ][o.e.c.m.MetadataCreateIndexService] [LAPTOP-7SVUMV4L] [shopping] creating index, cause [api], templates [], shards [1]/[1], mappings []
如果重复发 PUT 请求 : http://127.0.0.1:9200/shopping 添加索引,会返回错误信息 :
{ "error": { "root_cause": [ { "type": "resource_already_exists_exception", "reason": "index [shopping/J0WlEhh4R7aDrfIc3AkwWQ] already exists", "index_uuid": "J0WlEhh4R7aDrfIc3AkwWQ", "index": "shopping" } ], "type": "resource_already_exists_exception", "reason": "index [shopping/J0WlEhh4R7aDrfIc3AkwWQ] already exists", "index_uuid": "J0WlEhh4R7aDrfIc3AkwWQ", "index": "shopping" }, "status": 400 }
查看所有索引
在 Postman 中,向 ES 服务器发 GET 请求 : http://127.0.0.1:9200/_cat/indices?v
这里请求路径中的_cat 表示查看的意思, indices 表示索引,所以整体含义就是查看当前 ES服务器中的所有索引,就好像 MySQL 中的 show tables 的感觉,服务器响应结果如下 :
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size yellow open shopping J0WlEhh4R7aDrfIc3AkwWQ 1 1 0 0 208b 208b
表头 | 含义 |
---|---|
health | 当前服务器健康状态: green(集群完整) yellow(单点正常、集群不完整) red(单点不正常) |
status | 索引打开、关闭状态 |
index | 索引名 |
uuid | 索引统一编号 |
pri | 主分片数量 |
rep | 副本数量 |
docs.count | 可用文档数量 |
docs.deleted | 文档删除状态(逻辑删除) |
store.size | 主分片和副分片整体占空间大小 |
pri.store.size | 主分片占空间大小 |
查看单个索引
在 Postman 中,向 ES 服务器发 GET 请求 : http://127.0.0.1:9200/shopping
返回结果如下:
{ "shopping": {//索引名 "aliases": {},//别名 "mappings": {},//映射 "settings": {//设置 "index": {//设置 - 索引 "creation_date": "1617861426847",//设置 - 索引 - 创建时间 "number_of_shards": "1",//设置 - 索引 - 主分片数量 "number_of_replicas": "1",//设置 - 索引 - 主分片数量 "uuid": "J0WlEhh4R7aDrfIc3AkwWQ",//设置 - 索引 - 主分片数量 "version": {//设置 - 索引 - 主分片数量 "created": "7080099" }, "provided_name": "shopping"//设置 - 索引 - 主分片数量 } } } }
标签:index,shopping,请求,索引,Elasticsearch,服务器 来源: https://www.cnblogs.com/wkfvawl/p/15880215.html