【强化学习实战】Q-learning:控制agent向右走的小例子
作者:互联网
【强化学习实战】Q-learning:向右走的小例子
本笔记根据【莫凡】的强化学习视频整理得来
向右走:Q-learning
算法伪代码
"""
A simple example for Reinforcement Learning using table lookup Q-learning method.
An agent "o" is on the left of a 1 dimensional world, the treasure is on the rightmost location.
Run this program and to see how the agent will improve its strategy of finding the treasure.
View more on my tutorial page: https://morvanzhou.github.io/tutorials/
"""
import numpy as np
import pandas as pd
import time
np.random.seed(2) # reproducible
N_STATES = 6 # the length of the 1 dimensional world
ACTIONS = ['left', 'right'] # available actions
EPSILON = 0.9 # greedy police
ALPHA = 0.1 # learning rate
GAMMA = 0.9 # discount factor
MAX_EPISODES = 13 # maximum episodes
FRESH_TIME = 0.3 # fresh time for one move
def build_q_table(n_states, actions):
table = pd.DataFrame(
np.zeros((n_states, len(actions))), # q_table initial values
columns=actions, # actions's name
)
# print(table) # show table
return table
def choose_action(state, q_table):
# This is how to choose an action
state_actions = q_table.iloc[state, :]
if (np.random.uniform() > EPSILON) or ((state_actions == 0).all()): # act non-greedy or state-action have no value
action_name = np.random.choice(ACTIONS)
else: # act greedy
action_name = state_actions.idxmax() # replace argmax to idxmax as argmax means a different function in newer version of pandas
return action_name
def get_env_feedback(S, A):
# This is how agent will interact with the environment
if A == 'right': # move right
if S == N_STATES - 2: # terminate
S_ = 'terminal'
R = 1
else:
S_ = S + 1
R = 0
else: # move left
R = 0
if S == 0:
S_ = S # reach the wall
else:
S_ = S - 1
return S_, R
def update_env(S, episode, step_counter):
# This is how environment be updated
env_list = ['-']*(N_STATES-1) + ['T'] # '---------T' our environment
if S == 'terminal':
interaction = 'Episode %s: total_steps = %s' % (episode+1, step_counter)
print('\r{}'.format(interaction), end='')
time.sleep(2)
print('\r ', end='')
else:
env_list[S] = 'o'
interaction = ''.join(env_list)
print('\r{}'.format(interaction), end='')
time.sleep(FRESH_TIME)
def rl():
# main part of RL loop
q_table = build_q_table(N_STATES, ACTIONS)
for episode in range(MAX_EPISODES):
step_counter = 0
S = 0
is_terminated = False
update_env(S, episode, step_counter)
while not is_terminated:
A = choose_action(S, q_table)
S_, R = get_env_feedback(S, A) # take action & get next state and reward
q_predict = q_table.loc[S, A]
if S_ != 'terminal':
q_target = R + GAMMA * q_table.iloc[S_, :].max() # next state is not terminal
else:
q_target = R # next state is terminal
is_terminated = True # terminate this episode
q_table.loc[S, A] += ALPHA * (q_target - q_predict) # update
S = S_ # move to next state
update_env(S, episode, step_counter+1)
step_counter += 1
return q_table
if __name__ == "__main__":
q_table = rl()
print('\r\nQ-table:\n')
print(q_table)
运行结果如下
Q-table:
left right
0 0.000000 0.004320
1 0.000000 0.025005
2 0.000030 0.111241
3 0.000000 0.368750
4 0.027621 0.745813
5 0.000000 0.000000
标签:env,step,agent,state,向右走,actions,learning,action,table 来源: https://blog.csdn.net/HsinglukLiu/article/details/122812438