其他分享
首页 > 其他分享> > 04_第四章 Hadoop数据压缩

04_第四章 Hadoop数据压缩

作者:互联网

1. 01 Map输出设置压缩 案例

package ComMapOutPk {

  import java.lang

  import org.apache.hadoop.conf.Configuration
  import org.apache.hadoop.fs.Path
  import org.apache.hadoop.io.compress.{BZip2Codec, GzipCodec, SnappyCodec}
  import org.apache.hadoop.io.{IntWritable, LongWritable, Text}
  import org.apache.hadoop.mapreduce.lib.input.FileInputFormat
  import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat
  import org.apache.hadoop.mapreduce.{Job, Mapper, Reducer}
  import org.apache.hadoop.io.compress.CompressionCodec


  // Mapper 类
  // 每个Mapper类实例 处理一个切片文件
  class WCMapper extends Mapper[LongWritable, Text, Text, IntWritable] {
    var text = new Text
    var intWritable = new IntWritable(1)

    // 每行记录调用一次map方法
    override def map(key: LongWritable, value: Text, context: Mapper[LongWritable, Text, Text, IntWritable]#Context) = {
      println("map enter .....")
      //1. 获取一行记录
      val line = value.toString

      //2. 切割
      val words = line.split(" ")

      //3. 输出到缓冲区
      words.foreach(
        key1 => {
          text.set(key1);
          context.write(text, intWritable)
        }
      )

    }
  }

  // Reducer 类
  // 所有Mapper实例 执行完毕后 Reducer才会执行
  // Mapper类的输出类型 = Reducer类的输入类型
  class WCReducer extends Reducer[Text, IntWritable, Text, IntWritable] {

    private val intWritable = new IntWritable

    // 每个key调用一次
    // 张飞 <1,1,1,1,1>
    override def reduce(key: Text, values: lang.Iterable[IntWritable], context: Reducer[Text, IntWritable, Text, IntWritable]#Context) = {
      println("reduce enter .....")
      var sum: Int = 0

      // 1. 对词频数 求sum
      values.forEach(sum += _.get)

      // 2. 输出结果
      intWritable.set(sum)
      context.write(key, intWritable)

    }
  }

  // Driver
  object Driver {
    def main(args: Array[String]): Unit = {
      //1. 获取配置信息以及 获取job对象
      //读取配置文件  Configuration: core-default.xml, core-site.xml
      var configuration = new Configuration

//      configuration.set("mapreduce.map.output.compress","true")
//      configuration.set("mapreduce.map.output.compression.codec","org.apache.hadoop.io.compress.GzipCodec")

      //开启map端输出压缩
      configuration.set("mapreduce.map.output.compress","true")

      //指定map端输出压缩算法
      //configuration.setClass("mapreduce.map.output.compress.codec",classOf[BZip2Codec],classOf[CompressionCodec]);
      configuration.setClass("mapreduce.map.output.compress.codec",classOf[org.apache.hadoop.io.compress.BZip2Codec],classOf[CompressionCodec]);
      //INFO [org.apache.hadoop.io.compress.CodecPool] - Got brand-new compressor [.bz2]、[.gz]

      var job: Job = Job.getInstance(configuration)

      //2. 注册本Driver程序的jar
      job.setJarByClass(this.getClass)

      job.setJobName("compress mr")

      //3. 注册 Mapper 和 Reducer的jar
      job.setMapperClass(classOf[WCMapper])
      job.setReducerClass(classOf[WCReducer])

      //4. 设置Mapper 类输出key-value 数据类型
      job.setMapOutputKeyClass(classOf[Text])
      job.setMapOutputValueClass(classOf[IntWritable])

      //5. 设置最终输出key-value 数据类型
      job.setOutputKeyClass(classOf[Text])
      job.setOutputValueClass(classOf[IntWritable])

      //6. 设置输入输出路径
      FileInputFormat.setInputPaths(job, "src/main/data/input/1.txt")
      FileOutputFormat.setOutputPath(job, new Path("src/main/data/output"))


      //7. 提交job
      val bool: Boolean = job.waitForCompletion(true)
      System.exit(bool match {
        case true => "0".toInt
        case false => "1".toInt
      })

    }


  }


}

 

2. 02 Reduce输出设置压缩 案例

/**
  * @author gaocun
  * @create 2022-01-06 8:10 PM */
package ComReduceOutPk {

  import java.lang

  import org.apache.hadoop.conf.Configuration
  import org.apache.hadoop.fs.Path
  import org.apache.hadoop.io.compress.{BZip2Codec, GzipCodec, SnappyCodec}
  import org.apache.hadoop.io.{IntWritable, LongWritable, Text}
  import org.apache.hadoop.mapreduce.lib.input.FileInputFormat
  import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat
  import org.apache.hadoop.mapreduce.{Job, Mapper, Reducer}
  import org.apache.hadoop.io.compress.CompressionCodec


  // Mapper 类
  // 每个Mapper类实例 处理一个切片文件
  class WCMapper extends Mapper[LongWritable, Text, Text, IntWritable] {
    var text = new Text
    var intWritable = new IntWritable(1)

    // 每行记录调用一次map方法
    override def map(key: LongWritable, value: Text, context: Mapper[LongWritable, Text, Text, IntWritable]#Context) = {
      println("map enter .....")
      //1. 获取一行记录
      val line = value.toString

      //2. 切割
      val words = line.split(" ")

      //3. 输出到缓冲区
      words.foreach(
        key1 => {
          text.set(key1);
          context.write(text, intWritable)
        }
      )

    }
  }

  // Reducer 类
  // 所有Mapper实例 执行完毕后 Reducer才会执行
  // Mapper类的输出类型 = Reducer类的输入类型
  class WCReducer extends Reducer[Text, IntWritable, Text, IntWritable] {

    private val intWritable = new IntWritable

    // 每个key调用一次
    // 张飞 <1,1,1,1,1>
    override def reduce(key: Text, values: lang.Iterable[IntWritable], context: Reducer[Text, IntWritable, Text, IntWritable]#Context) = {
      println("reduce enter .....")
      var sum: Int = 0

      // 1. 对词频数 求sum
      values.forEach(sum += _.get)

      // 2. 输出结果
      intWritable.set(sum)
      context.write(key, intWritable)

    }
  }

  // Driver
  object Driver {
    def main(args: Array[String]): Unit = {
      //1. 获取配置信息以及 获取job对象
      //读取配置文件  Configuration: core-default.xml, core-site.xml
      var configuration = new Configuration

      var job: Job = Job.getInstance(configuration)

      //2. 注册本Driver程序的jar
      job.setJarByClass(this.getClass)

      job.setJobName("compress mr")

      //3. 注册 Mapper 和 Reducer的jar
      job.setMapperClass(classOf[WCMapper])
      job.setReducerClass(classOf[WCReducer])

      //4. 设置Mapper 类输出key-value 数据类型
      job.setMapOutputKeyClass(classOf[Text])
      job.setMapOutputValueClass(classOf[IntWritable])

      //5. 设置最终输出key-value 数据类型
      job.setOutputKeyClass(classOf[Text])
      job.setOutputValueClass(classOf[IntWritable])

      //6. 设置输入输出路径
      FileInputFormat.setInputPaths(job, "src/main/data/input/1.txt")
      FileOutputFormat.setOutputPath(job, new Path("src/main/data/output"))

      //7. reduce 输出设置压缩

      //开启reduce端输出压缩
      FileOutputFormat.setCompressOutput(job, true)

      //指定reduce端输出压缩算法
      //FileOutputFormat.setOutputCompressorClass(job,classOf[BZip2Codec])
      //FileOutputFormat.setOutputCompressorClass(job,classOf[GzipCodec])


      //7. 提交job
      val bool: Boolean = job.waitForCompletion(true)
      System.exit(bool match {
        case true => "0".toInt
        case false => "1".toInt
      })

    }


  }


}

 

标签:IntWritable,04,Text,Hadoop,hadoop,job,apache,org,数据压缩
来源: https://www.cnblogs.com/bajiaotai/p/15868590.html