pandas基于numpy,所以其中的空值nan和numpy.nan是等价的。numpy中的nan并不是空对象,其实际上是numpy.float64对象,所以我们不能误认为其是空对象,从而用bool(np.nan)去判断是否为空值,这是不对的。
-
可以判断pandas中单个空值对象的方式:
- 利用
pd.isnull()
,pd.isna()
; - 利用
np.isnan()
; - 利用
is
表达式; - 利用
in
表达式。
- 利用
-
不可以用来判断pandas单个空值对象的方式:
- 不可直接用==表达式判断;
- 不可直接用bool表达式判断;
- 不可直接用if语句判断。
-
对于同时多个空值对象的判断和处理:
- 可以用Series对象和DataFrame对象的any()或all()方法;
- 可以用numpy的any()或all()方法;
- 不可以直接用python的内置函数any()和all()方法;
- 可以用Series或DataFrame对象的dropna()方法剔除空值;
- 可以用Series或DataFrame对象的fillna()方法填充空值。
总结:
numpy.nan
是一个numpy.float64
的非空对象,所以不能直接用bool表达式去判断,故一切依赖于布尔表达式的判断方式都不行,比如if语句。- 对于pandas中空值的判断,我们只能通过pandas或者numpy的函数和is表达式去判断,不能用python的内置函数any或all判断。
标签:判断,对象,nan,空值,numpy,pandas
来源: https://www.cnblogs.com/zjuhaohaoxuexi/p/15865290.html
本站声明:
1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。