其他分享
首页 > 其他分享> > PyTorch 3 - 模型相关方法

PyTorch 3 - 模型相关方法

作者:互联网

文章目录


创建模型

如,创建线性模型

class LinearModel(nn.Module):
    def __init__(self, ndim):
        super(LinearModel, self).__init__()
        self.ndim = ndim

        self.weight = nn.Parameter(torch.randn(ndim, 1))
        self.bias = nn.Parameter(torch.randn(1)) 

    def forward(self, x):
        
        return x.mm(self.weight) + self.bias 

模型初始化、参数

## 模型初始化
lm = LinearModel(5) # 特征数为 5
x = torch.randn(4, 5) # 迷你批次大小为 4 
lm(x) 
'''
tensor([[-3.0970],
        [-2.9674],
        [ 3.3265],
        [ 4.1923]], grad_fn=<AddBackward0>)
'''
x
'''
tensor([[-0.3725, -1.7013, -2.6523, -0.8103, -0.1179],
        [-1.1700,  0.0091, -0.0386, -1.3510,  0.9027],
        [ 1.5329,  0.9760, -0.4165,  0.2783, -0.6180],
        [ 1.0752,  0.0267,  0.9067,  2.2452,  0.6527]])
'''

# 获取模型参数(带名字)的生成器
lm.named_parameters() 
'''
<generator object Module.named_parameters at 0x7ffa27d46c50>
list(lm.named_parameters() )
[('weight', Parameter containing:
  tensor([[2.2394],
          [0.2185],
          [0.5514],
          [0.4709],
          [0.3480]], requires_grad=True)), ('bias', Parameter containing:
  tensor([-0.0059], requires_grad=True))]
'''

# 获取模型参数(不带名字)的生成器
lm.parameters()
'''
<generator object Module.parameters at 0x7ffa29907d50>
list(lm.parameters() )
[Parameter containing:
 tensor([[2.2394],
         [0.2185],
         [0.5514],
         [0.4709],
         [0.3480]], requires_grad=True), Parameter containing:
 tensor([-0.0059], requires_grad=True)]
'''


lm.half() # 转换模型参数为半精度浮点数
'''
LinearModel()
list(lm.parameters())
[Parameter containing:
 tensor([[2.2402],
         [0.2185],
         [0.5513],
         [0.4709],
         [0.3479]], dtype=torch.float16, requires_grad=True),
 Parameter containing:
 tensor([-0.0059], dtype=torch.float16, requires_grad=True)]
lm.parameters
<bound method Module.parameters of LinearModel()>
'''


from sklearn.datasets import load_boston
boston = load_boston()
lm = LinearModel(13)
criterion = nn.MSELoss()
# 优化器
optim = torch.optim.SGD(lm.parameters(), lr=1e-6)
optim
'''
SGD (
Parameter Group 0
    dampening: 0
    lr: 1e-06
    momentum: 0
    nesterov: False
    weight_decay: 0
)
'''
data = torch.tensor(boston['data'], requires_grad=True, dtype=torch.float32) 
data
'''
tensor([[6.3200e-03, 1.8000e+01, 2.3100e+00,  ..., 1.5300e+01, 3.9690e+02,
         4.9800e+00],
        ...
        [4.7410e-02, 0.0000e+00, 1.1930e+01,  ..., 2.1000e+01, 3.9690e+02,
         7.8800e+00]], requires_grad=True)
'''
target = torch.tensor(boston['target'], dtype=torch.float32) 


for step in range(10000):
    predict = lm(data)
    loss = criterion(predict, target)
    if step and step%1000 == 0:
        print('-- loss : {:.3f}'.format(loss.item()) ) # 可以发现损失函数在逐层下降 
    optim.zero_grad()
    loss.backward() # 计算所有参数当前反向传播的梯度
    optim.step()
'''
/Users/xx/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/loss.py:446: UserWarning: Using a target size (torch.Size([506])) that is different to the input size (torch.Size([506, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size.
  return F.mse_loss(input, target, reduction=self.reduction)
-- loss : 224.251
-- loss : 150.535
-- loss : 143.163
-- loss : 138.828
-- loss : 135.080
-- loss : 131.752
-- loss : 128.779
-- loss : 126.110
-- loss : 123.706
'''


optim.state_dict()
'''
{'state': {},
 'param_groups': [{'lr': 1e-06,
   'momentum': 0,
   'dampening': 0,
   'weight_decay': 0,
   'nesterov': False,
   'params': [0, 1]}]}
'''

保存/加载模型

save_info = {
    'iter_num': 10000, 
    'optimizer': optim.state_dict(),
    'model': lm.state_dict(),

}

save_info
'''
{'iter_num': 10000,
 'optimizer': {'state': {},
  'param_groups': [{'lr': 1e-06,
    'momentum': 0,
    'dampening': 0,
    'weight_decay': 0,
    'nesterov': False,
    'params': [0, 1]}]},
 'model': OrderedDict([('weight', tensor([[-0.0506],
                       [ 0.1244],
                       [ 0.9757],
                       [-1.9508],
                       [-0.1465],
                       [-1.9823],
                       [ 0.0850],
                       [ 0.4799],
                       [-0.3672],
                       [ 0.0141],
                       [ 0.4012],
                       [ 0.0298],
                       [-0.5437]])), ('bias', tensor([1.5198]))])}
'''
                       
save_path = 'model1.txt'
torch.save(save_info, save_path) 


save_info1 = torch.load(save_path)
save_info1
'''
{'iter_num': 10000,
 'optimizer': {'state': {},
  'param_groups': [{'lr': 1e-06,
    'momentum': 0,
    'dampening': 0,
    'weight_decay': 0,
    'nesterov': False,
    'params': [0, 1]}]},
 'model': OrderedDict([('weight', tensor([[-0.0506],
                       [ 0.1244],
                       [ 0.9757],
                       [-1.9508],
                       [-0.1465],
                       [-1.9823],
                       [ 0.0850],
                       [ 0.4799],
                       [-0.3672],
                       [ 0.0141],
                       [ 0.4012],
                       [ 0.0298],
                       [-0.5437]])), ('bias', tensor([1.5198]))])}
     
'''

                  
# 载入信息
optim.load_state_dict(save_info1['optimizer'])
lm.load_state_dict(save_info1['model'])
<All keys matched successfully>


自动求导

import torch
t1 = torch.randn(3, 3, requires_grad=True)
'''
tensor([[-0.4336, -0.1928,  0.3398],
        [-0.5616,  0.1290,  0.8002],
        [-1.1966,  1.4117, -0.3643]], requires_grad=True)
'''		

t2 = t1.pow(2)
'''
tensor([[0.1880, 0.0372, 0.1154],
        [0.3154, 0.0166, 0.6403],
        [1.4319, 1.9929, 0.1327]], grad_fn=<PowBackward0>)
'''

t2 = t2.sum()	# tensor(4.8705, grad_fn=<SumBackward0>)

t2.backward()


t1.grad  # x^2 倒数为 2x, 此处结果是原始分量的 2 倍  
'''
tensor([[-0.8671, -0.3855,  0.6795],
        [-1.1232,  0.2580,  1.6004],
        [-2.3932,  2.8234, -0.7287]])
'''		

t1.grad.zero_() # 单个张量清零梯度
'''
tensor([[0., 0., 0.],
        [0., 0., 0.],
        [0., 0., 0.]])
'''



梯度函数

t1 = torch.randn(3, 3, requires_grad=True)
'''
tensor([[ 1.3203, -0.6757,  1.4479],
        [ 0.6133, -0.8377, -0.9381],
        [ 0.3214,  0.9020,  0.1285]], requires_grad=True)
'''
t2 = t1.sum() # tensor(2.2819, grad_fn=<SumBackward0>)

with torch.no_grad():
    t3 = t1.sum()

t3 # tensor(2.2819)
t1.sum() # tensor(2.2819, grad_fn=<SumBackward0>)

# 和原来的计算图分离
t1.sum().detach() # tensor(2.2819)

损失函数

mse

import torch.nn as nn
import torch 
 
mse = nn.MSELoss()
t1 = torch.randn(5, requires_grad=True)

t2 = torch.randn(5, requires_grad=True)

# t1 tensor([-0.5326, -2.1040, -0.0849,  0.0078, -0.3299], requires_grad=True)
# t2 tensor([-0.3427,  0.5773, -0.8011, -0.6496, -0.9095], requires_grad=True)
 
mse(t1, t2)
# tensor(1.7013, grad_fn=<MseLossBackward>)


二分类 bce


t1 = torch.randn(5, requires_grad=True) 
# t1 tensor([ 0.3398,  0.8650, -1.2867, -1.4845,  0.6145], requires_grad=True)

# 分类标签概率值
t1s = torch.sigmoid(t1)  # 求 sigmoid 函数,转化为 (0,1) 之间的概率 
# t1s tensor([0.5841, 0.7037, 0.2164, 0.1847, 0.6490], grad_fn=<SigmoidBackward>)
 
# 目标数据值;随机生成 0,1 的整数序列,并转化为浮点数 
t2 = torch.randint(0, 2, (5, )).float()
# t2 tensor([1., 0., 1., 1., 0.])

bce = nn.BCELoss()
bce(t1s, t2) # 计算二分类的交叉熵;接收的两个参数都必须是浮点数
# tensor(1.2041, grad_fn=<BinaryCrossEntropyBackward>)

# 对数(Logits)交叉损失函数;可以直接省略 sigmoid 计算部分;自动在函数内部添加 sigmoid 激活函数;
# 在训练时,使用这个函数可以增加计算数值的稳定性。 
bce_logits = nn.BCEWithLogitsLoss()  
bce_logits(t1, t2) # 与上方结果一致
# tensor(1.2041, grad_fn=<BinaryCrossEntropyWithLogitsBackward>)

多分类

N = 10 # 分类数目
t1 = torch.randn(5, N, requires_grad=True)
t2 = torch.randint(0, N, (5, ))
# t2  tensor([7, 5, 3, 2, 5])
 
t1s = nn.functional.log_softmax(t1, -1)
    
# 负对数似然函数。
# 根据预测值(经过 softmax 的计算和对数计算) 和目标值(使用独热编码)计算这两个值 按照一一对应的乘积,然后对乘积求和,并取负值。
# 使用它之前,必须先计算 softmax 函数取对数的结果。
n11 = nn.NLLLoss()
n11(t1s, t2)
# tensor(2.3953, grad_fn=<NllLossBackward>)

# 可以避免 LogSoftmax 计算  
# 在损失函数中整合 Softmax 输出概率,以及对概率取对数输出损失函数
ce = nn.CrossEntropyLoss()
ce(t1, t2)
# tensor(2.3953, grad_fn=<NllLossBackward>)


标签:tensor,方法,模型,torch,requires,t1,PyTorch,True,grad
来源: https://blog.csdn.net/lovechris00/article/details/122766187