AlexNet pytorch代码实现
作者:互联网
import torch from torch import nn from d2l import torch as d2l net=nn.Sequential( nn.Conv2d(1,96,kernel_size=11,stride=4,padding=1),nn.ReLU(), nn.MaxPool2d(kernel_size=3,stride=2), nn.Conv2d(96,128*2,kernel_size=5,padding=2),nn.ReLU(), nn.MaxPool2d(kernel_size=3,stride=2), nn.Conv2d(128*2,192*2,kernel_size=3,padding=1),nn.ReLU(), nn.Conv2d(192*2,192*2,kernel_size=3,padding=1),nn.ReLU(), nn.Conv2d(192*2,128*2,kernel_size=3,padding=1),nn.ReLU(), nn.MaxPool2d(kernel_size=3,stride=2), # 6*6*256 nn.Flatten(), nn.Linear(6400,2048*2),nn.ReLU(),nn.Dropout(p=0.5), nn.Linear(2048*2,2048*2),nn.ReLU(),nn.Dropout(p=0.5), nn.Linear(2048*2,10),nn.ReLU(), ) # 看每个层输出得形状 X=torch.randn(1,1,224,224) for layer in net: X=layer(X) print(layer.__class__.__name__,'Output shape:\t',X.shape) batch_size=32 train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size=batch_size,resize=224) lr,num_epochs=0.01,5 d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())
标签:kernel,nn,代码,ReLU,padding,pytorch,d2l,AlexNet,size 来源: https://blog.csdn.net/Li12139/article/details/122765461