超参数调优
作者:互联网
使用 Keras Tuner 帮助模型超参数调优
you will use the Keras Tuner to find the best hyperparameters for a machine learning model
import tensorflow as tf
from tensorflow import keras
import keras_tuner as kt
(img_train, label_train), (img_test, label_test) = keras.datasets.fashion_mnist.load_data()
# Normalize pixel values between 0 and 1
img_train = img_train_astype('float32') / 255.0
img_test = img_test_astype('float32') /255.0
Define the model
When you build a model for hypertuning, you also define the hyperparameter search space in addition to the model architecture. The model you set up for hypertuning is called a hypermodel.
You can define a hypermodel through two approaches:
- By using a model builder function
- By subclassing the
HyperModel
class of the Keras Tuner API
def model_builder(hp):
model = keras.Sequential()
model.add(keras.layers.Flatten(input_shape=(28, 28)))
# Tune the number of units in the first Dense layer, Choose an optimal value between 32-512
hp_units = hp.Int('units', min_value=32, max_value=512, step=32)
model.add(keras.layers.Dense(units=hp_units, activation='relu'))
model.add(keras.layers.Dense(10))
# Tune the learning rate for the optimizer, Choose an optimal value from 0.01, 0.001, or 0.0001
hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])
model.compile(optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
return model
Instantiate the tuner and perform hypertuning
Instantiate the tuner to perform the hypertuning. The Keras Tuner has four tuners available - RandomSearch
, Hyperband
, BayesianOptimization
, and Sklearn
.
To instantiate the Hyperband tuner, you must specify the hypermodel, the objective
to optimize and the maximum number of epochs to train (max_epochs
).
tuner = kt.Hyperband(model_builder,
objective='val_accuracy',
max_epochs=10,
factor=3,
directory='my_dir',
project_name='intro_to_kt')
stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)
tuner.search(img_train, label_train, epochs=50, validation_split=0.2, callbacks=[stop_early])
# Get the optimal hyperparameters
best_hps=tuner.get_best_hyperparameters(num_trials=1)[0]
print(f"""
The hyperparameter search is complete. The optimal number of units in the first densely-connected
layer is {best_hps.get('units')} and the optimal learning rate for the optimizer
is {best_hps.get('learning_rate')}.
""")
Find the optimal number of epochs to train the model with the hyperparameters obtained from the search.
# Build the model with the optimal hyperparameters and train it on the data for 50 epochs
model = tuner.hypermodel.build(best_hps)
history = model.fit(img_train, label_train, epochs=50, validation_split=0.2)
val_acc_per_epoch = history.history['val_accuracy']
best_epoch = val_acc_per_epoch.index(max(val_acc_per_epoch)) + 1
print('Best epoch: %d' % (best_epoch,))
标签:img,keras,train,参数,best,tuner,model,调优 来源: https://blog.csdn.net/qq_43283527/article/details/122745239