其他分享
首页 > 其他分享> > 超参数调优

超参数调优

作者:互联网

使用 Keras Tuner 帮助模型超参数调优

you will use the Keras Tuner to find the best hyperparameters for a machine learning model

import tensorflow as tf
from tensorflow import keras

import keras_tuner as kt

(img_train, label_train), (img_test, label_test) = keras.datasets.fashion_mnist.load_data()

# Normalize pixel values between 0 and 1
img_train = img_train_astype('float32') / 255.0
img_test = img_test_astype('float32') /255.0

Define the model

When you build a model for hypertuning, you also define the hyperparameter search space in addition to the model architecture. The model you set up for hypertuning is called a hypermodel.

You can define a hypermodel through two approaches:

def model_builder(hp):
    model = keras.Sequential()
    model.add(keras.layers.Flatten(input_shape=(28, 28)))

  # Tune the number of units in the first Dense layer, Choose an optimal value between 32-512
    hp_units = hp.Int('units', min_value=32, max_value=512, step=32)
    model.add(keras.layers.Dense(units=hp_units, activation='relu'))
    model.add(keras.layers.Dense(10))

  # Tune the learning rate for the optimizer, Choose an optimal value from 0.01, 0.001, or 0.0001
    hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])

    model.compile(optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),
                loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                metrics=['accuracy'])

    return model

Instantiate the tuner and perform hypertuning

Instantiate the tuner to perform the hypertuning. The Keras Tuner has four tuners available - RandomSearch, Hyperband, BayesianOptimization, and Sklearn.
To instantiate the Hyperband tuner, you must specify the hypermodel, the objective to optimize and the maximum number of epochs to train (max_epochs).

tuner = kt.Hyperband(model_builder,
                     objective='val_accuracy',
                     max_epochs=10,
                     factor=3,
                     directory='my_dir',
                     project_name='intro_to_kt')

stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)

tuner.search(img_train, label_train, epochs=50, validation_split=0.2, callbacks=[stop_early])

# Get the optimal hyperparameters
best_hps=tuner.get_best_hyperparameters(num_trials=1)[0]

print(f"""
The hyperparameter search is complete. The optimal number of units in the first densely-connected
layer is {best_hps.get('units')} and the optimal learning rate for the optimizer
is {best_hps.get('learning_rate')}.
""")

Find the optimal number of epochs to train the model with the hyperparameters obtained from the search.

# Build the model with the optimal hyperparameters and train it on the data for 50 epochs
model = tuner.hypermodel.build(best_hps)
history = model.fit(img_train, label_train, epochs=50, validation_split=0.2)

val_acc_per_epoch = history.history['val_accuracy']
best_epoch = val_acc_per_epoch.index(max(val_acc_per_epoch)) + 1
print('Best epoch: %d' % (best_epoch,))

标签:img,keras,train,参数,best,tuner,model,调优
来源: https://blog.csdn.net/qq_43283527/article/details/122745239