tcp cubic代码分析
作者:互联网
https://www.cnblogs.com/mylinuxer/p/5146142.html
/* * TCP CUBIC: Binary Increase Congestion control for TCP v2.3 * Home page: * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC * This is from the implementation of CUBIC TCP in * Sangtae Ha, Injong Rhee and Lisong Xu, * "CUBIC: A New TCP-Friendly High-Speed TCP Variant" * in ACM SIGOPS Operating System Review, July 2008. * Available from: * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf * * CUBIC integrates a new slow start algorithm, called HyStart. * The details of HyStart are presented in * Sangtae Ha and Injong Rhee, * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008. * Available from: * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf * * All testing results are available from: * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing * * Unless CUBIC is enabled and congestion window is large * this behaves the same as the original Reno. */ #include <linux/mm.h> #include <linux/module.h> #include <linux/math64.h> #include <net/tcp.h> #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation * max_cwnd = snd_cwnd * beta */ #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */ /* Two methods of hybrid slow start */ //Both run independently at the same time and slow start exits when any of them detects an exit point. //1. ACK train length //2. Delay increase #define HYSTART_ACK_TRAIN 0x1 #define HYSTART_DELAY 0x2 /* 注意:这里的delay_min没有放大8倍! * 此宏用来计算Delay increase threshold * delay_min <= 32ms,则threshold = 2ms * 32ms < delay_min < 256ms,则threshold = delay_min / 16 ms * delay_min >= 256ms,则threshold = 16ms */ /* Number of delay samples for detecting the increase of delay */ #define HYSTART_MIN_SAMPLES 8 #define HYSTART_DELAY_MIN (2U<<3) #define HYSTART_DELAY_MAX (16U<<3) #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX) static int fast_convergence __read_mostly = 1; static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */ //beta在BIC中为819,而CUBIC中为717, //会导致在bictcp_recalc_ssthresh中,并且启用了fast convergence, //cubic: last_max_cwnd = 0.85*snd_cwnd ,而慢启动阈值=0.7*snd_cwnd 。 //bic: last_max_cwnd = 0.95*snd_cwnd ,而慢启动阈值=0.8*snd_cwnd 。 //这样会导致更早的到达平衡值,对snd_cwnd有很大的影响。 static int initial_ssthresh __read_mostly; static int bic_scale __read_mostly = 41; static int tcp_friendliness __read_mostly = 1; //hybrid slow start的开关 static int hystart __read_mostly = 1; //HyStart状态描述 //1:packet-train 2: delay 3:both packet-train and delay //默认2种方法都使用,故设为3 static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY; //设置snd_ssthresh的最小拥塞窗口值,除非cwnd超过了这个值,才能使用HyStart static int hystart_low_window __read_mostly = 16; static u32 cube_rtt_scale __read_mostly; static u32 beta_scale __read_mostly; static u64 cube_factor __read_mostly; /* Note parameters that are used for precomputing scale factors are read-only */ module_param(fast_convergence, int, 0644); MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence"); module_param(beta, int, 0644); MODULE_PARM_DESC(beta, "beta for multiplicative increase"); module_param(initial_ssthresh, int, 0644); MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold"); module_param(bic_scale, int, 0444); MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)"); module_param(tcp_friendliness, int, 0644); MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness"); module_param(hystart, int, 0644); MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm"); module_param(hystart_detect, int, 0644); MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms" " 1: packet-train 2: delay 3: both packet-train and delay"); module_param(hystart_low_window, int, 0644); MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start"); /* BIC TCP Parameters */ struct bictcp { u32 cnt; /*用来控制snd_cwnd的增长 increase cwnd by 1 after ACKs */ //两个重要的count值: //第一个是tcp_sock->snd_cwnd_cnt,表示在当前的拥塞窗口中已经 //发送(经过对方ack包确认)的数据段的个数, //而第二个是bictcp->cnt,它是cubic拥塞算法的核心, //主要用来控制在拥塞避免状态的时候,什么时候才能增大拥塞窗口, //具体实现是通过比较cnt和snd_cwnd_cnt,来决定是否增大拥塞窗口, u32 last_max_cwnd; /*上一次的最大拥塞窗口值 last maximum snd_cwnd */ u32 loss_cwnd; /* 拥塞状态切换时的拥塞窗口值congestion window at last loss */ u32 last_cwnd; /* 上一次的拥塞窗口值 the last snd_cwnd */ u32 last_time; /* time when updated last_cwnd */ u32 bic_origin_point;/*即新的Wmax饱和点,取Wlast_max_cwnd和snd_cwnd较大者 origin point of bic function */ u32 bic_K; /*即新Wmax所对应的时间点t,W(bic_K) = Wmax time to origin point from the beginning of the current epoch */ u32 delay_min; /*应该是最小RTT min delay */ u32 epoch_start; /*拥塞状态切换开始的时刻 beginning of an epoch */ u32 ack_cnt; /*在一个epoch中的ack包的数量 number of acks */ u32 tcp_cwnd; /*按照Reno算法计算得的cwnd estimated tcp cwnd */ #define ACK_RATIO_SHIFT 4 u16 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */ u8 sample_cnt; /*第几个sample number of samples to decide curr_rtt */ u8 found; /* the exit point is found? */ u32 round_start; /*针对每个RTT beginning of each round */ u32 end_seq; /*用来标识每个RTT end_seq of the round */ u32 last_jiffies; /*超过2ms则不认为是连续的 last time when the ACK spacing is close */ u32 curr_rtt; /*由sampe中最小的决定 the minimum rtt of current round */ }; static inline void bictcp_reset(struct bictcp *ca) {//论文说Time out时调用 ca->cnt = 0; ca->last_max_cwnd = 0; ca->loss_cwnd = 0; ca->last_cwnd = 0; ca->last_time = 0; ca->bic_origin_point = 0; ca->bic_K = 0; ca->delay_min = 0; ca->epoch_start = 0; ca->delayed_ack = 2 << ACK_RATIO_SHIFT; ca->ack_cnt = 0; ca->tcp_cwnd = 0; ca->found = 0; } static inline void bictcp_hystart_reset(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); ca->round_start = ca->last_jiffies = jiffies;//记录时间戳 ca->end_seq = tp->snd_nxt;//记录待发送的下一个序列号 ca->curr_rtt = 0; ca->sample_cnt = 0; //bictcp_hystart_reset中并没有对ca->found置0。 //也就是说,只有在初始化时、LOSS状态时、开启hystart的慢启动时。 //HyStart才会派上用场,其它时间并不使用. } static void bictcp_init(struct sock *sk) { bictcp_reset(inet_csk_ca(sk)); if (hystart)//如果指定hystart bictcp_hystart_reset(sk); if (!hystart && initial_ssthresh) tcp_sk(sk)->snd_ssthresh = initial_ssthresh; } /* calculate the cubic root of x using a table lookup followed by one * Newton-Raphson iteration. * Avg err ~= 0.195% */ static u32 cubic_root(u64 a) //用来计算立方根 { u32 x, b, shift; /* * cbrt(x) MSB values for x MSB values in [0..63]. * Precomputed then refined by hand - Willy Tarreau * * For x in [0..63], * v = cbrt(x << 18) - 1 * cbrt(x) = (v[x] + 10) >> 6 */ static const u8 v[] = { /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118, /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156, /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179, /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199, /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215, /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229, /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242, /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254, }; b = fls64(a); if (b < 7) { /* a in [0..63] */ return ((u32)v[(u32)a] + 35) >> 6; } b = ((b * 84) >> 8) - 1; shift = (a >> (b * 3)); x = ((u32)(((u32)v[shift] + 10) << b)) >> 6; /* * Newton-Raphson iteration * 2 * x = ( 2 * x + a / x ) / 3 * k+1 k k */ x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1))); x = ((x * 341) >> 10); return x; } /* * Compute congestion window to use. */ //从快速恢复退出并进入拥塞避免状态之后,更新cnt static inline void bictcp_update(struct bictcp *ca, u32 cwnd) { u64 offs;//时间差|t - K| //delta是cwnd差,bic_target是预测值,t为预测时间 u32 delta, t, bic_target, max_cnt; ca->ack_cnt++; /*ack包计数器加1 count the number of ACKs */ if (ca->last_cwnd == cwnd && //当前窗口与历史窗口相同 (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)//时间差小于1000/32ms return; //直接结束 ca->last_cwnd = cwnd;//记录进入拥塞避免时的窗口值 ca->last_time = tcp_time_stamp;//记录进入拥塞避免时的时刻 if (ca->epoch_start == 0) {//丢包后,开启一个新的时段 ca->epoch_start = tcp_time_stamp; /*新时段的开始 record the beginning of an epoch */ ca->ack_cnt = 1; /*ack包计数器初始化 start counting */ ca->tcp_cwnd = cwnd; /*同步更新 syn with cubic */ //取max(last_max_cwnd , cwnd)作为当前Wmax饱和点 if (ca->last_max_cwnd <= cwnd) { ca->bic_K = 0; ca->bic_origin_point = cwnd; } else { /* Compute new K based on * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ) */ ca->bic_K = cubic_root(cube_factor * (ca->last_max_cwnd - cwnd)); ca->bic_origin_point = ca->last_max_cwnd; } } /* cubic function - calc*/ /* calculate c * time^3 / rtt, * while considering overflow in calculation of time^3 * (so time^3 is done by using 64 bit) * and without the support of division of 64bit numbers * (so all divisions are done by using 32 bit) * also NOTE the unit of those veriables * time = (t - K) / 2^bictcp_HZ * c = bic_scale >> 10 == 0.04 * rtt = (srtt >> 3) / HZ * !!! The following code does not have overflow problems, * if the cwnd < 1 million packets !!! */ /* change the unit from HZ to bictcp_HZ */ t = ((tcp_time_stamp + (ca->delay_min>>3) - ca->epoch_start) << BICTCP_HZ) / HZ; //求| t - bic_K | if (t < ca->bic_K) // 还未达到Wmax offs = ca->bic_K - t; else offs = t - ca->bic_K;//已经超过Wmax /* c/rtt * (t-K)^3 */ //计算立方,delta =| W(t) - W(bic_K) | delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ); //t为预测时间,bic_K为新Wmax所对应的时间, //bic_target为cwnd预测值,bic_origin_point为当前Wmax饱和点 if (t < ca->bic_K) /* below origin*/ bic_target = ca->bic_origin_point - delta; else /* above origin*/ bic_target = ca->bic_origin_point + delta; /* cubic function - calc bictcp_cnt*/ if (bic_target > cwnd) {// 相差越多,增长越快,这就是函数形状由来 ca->cnt = cwnd / (bic_target - cwnd);// } else {//目前cwnd已经超出预期了,应该降速 ca->cnt = 100 * cwnd; /* very small increment*/ } /* TCP Friendly —如果bic比RENO慢,则提升cwnd增长速度,即减小cnt * 以上次丢包以后的时间t算起,每次RTT增长 3B / ( 2 - B),那么可以得到 * 采用RENO算法的cwnd。 * cwnd (RENO) = cwnd + 3B / (2 - B) * ack_cnt / cwnd * B为乘性减少因子,在此算法中为0.3 */ if (tcp_friendliness) { u32 scale = beta_scale; delta = (cwnd * scale) >> 3; //delta代表多少ACK可使tcp_cwnd++ while (ca->ack_cnt > delta) { /* update tcp cwnd */ ca->ack_cnt -= delta; ca->tcp_cwnd++; } if (ca->tcp_cwnd > cwnd){ /* if bic is slower than tcp */ delta = ca->tcp_cwnd - cwnd; max_cnt = cwnd / delta; if (ca->cnt > max_cnt) ca->cnt = max_cnt; } } ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack; if (ca->cnt == 0) /* cannot be zero */ ca->cnt = 1; //此时代表cwnd远小于bic_target,增长速度最大 } static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) { struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); //判断发送拥塞窗口是否到达限制,如果到达限制则直接返回。 if (!tcp_is_cwnd_limited(sk, in_flight)) return; if (tp->snd_cwnd <= tp->snd_ssthresh) { //当snd_cwnd<=ssthresh的时候,进入慢启动状态 if (hystart && after(ack, ca->end_seq))//是否需要reset对应的bictcp的值 bictcp_hystart_reset(sk); tcp_slow_start(tp);//进入slow start状态 } else { //当snd_cwnd>ssthresh的时候,进入拥塞避免状态 bictcp_update(ca, tp->snd_cwnd);//首先会更新bictcp->cnt tcp_cong_avoid_ai(tp, ca->cnt);//然后进入拥塞避免,更新tcp_sock->snd_cwnd_cnt } } //每次发生拥塞状态切换时,就会重新计算慢启动阈值 //做了两件事:重赋值last_max_cwnd、返回新的慢启动阈值 static u32 bictcp_recalc_ssthresh(struct sock *sk) {//论文说这个函数在Packet loss时调用 const struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); ca->epoch_start = 0; /* 发生拥塞状态切换,标志一个epoch结束 end of epoch */ /* Wmax and fast convergence */ //当一个新的TCP流加入到网络, //网络中已有TCP流需要放弃自己带宽, //给新的TCP流提供一定的上升空间。 //为提高已有TCP流所释放的带宽而引入快速收敛机制。 if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence) //snd_cwnd<last_max_cwnd //表示已有TCP流所经历的饱和点因为可用带宽改变而正在降低。 //然后,通过进一步降低Wmax让已有流释放更多带宽。 //这种行为有效地延长已有流增大其窗口的时间, //因为降低后的Wmax强制已有流更早进入平稳状态。 //这允许新流有更多的时间来赶上其窗口尺寸。 ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta)) / (2 * BICTCP_BETA_SCALE); //last_max_cwnd = 0.9 * snd_cwnd else ca->last_max_cwnd = tp->snd_cwnd; ca->loss_cwnd = tp->snd_cwnd; //修改snd_ssthresh,即max(0.7*snd_cwnd,2) return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U); } static u32 bictcp_undo_cwnd(struct sock *sk) { struct bictcp *ca = inet_csk_ca(sk); return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd); } static void bictcp_state(struct sock *sk, u8 new_state) { if (new_state == TCP_CA_Loss) {//如果处于LOSS状态,丢包处理 bictcp_reset(inet_csk_ca(sk)); bictcp_hystart_reset(sk); } } static void hystart_update(struct sock *sk, u32 delay) {//会修改snd_ssthresh struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); if (!(ca->found & hystart_detect)) { u32 curr_jiffies = jiffies; /* first detection parameter - ack-train detection */ if (curr_jiffies - ca->last_jiffies <= msecs_to_jiffies(2)) { ca->last_jiffies = curr_jiffies; if (curr_jiffies - ca->round_start >= ca->delay_min>>4) ca->found |= HYSTART_ACK_TRAIN; } /* obtain the minimum delay of more than sampling packets */ if (ca->sample_cnt < HYSTART_MIN_SAMPLES) { if (ca->curr_rtt == 0 || ca->curr_rtt > delay) ca->curr_rtt = delay; ca->sample_cnt++; } else { if (ca->curr_rtt > ca->delay_min + HYSTART_DELAY_THRESH(ca->delay_min>>4)) ca->found |= HYSTART_DELAY; } /* * Either one of two conditions are met, * we exit from slow start immediately. */ if (ca->found & hystart_detect)//found是一个是否退出slow start的标记 tp->snd_ssthresh = tp->snd_cwnd;//修改snd_ssthresh } } /* Track delayed acknowledgment ratio using sliding window * ratio = (15*ratio + sample) / 16 */ //基本每次收到ack都会调用这个函数,更新snd_ssthresh和delayed_ack static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us) {//论文说这个函数在On each ACK时调用 const struct inet_connection_sock *icsk = inet_csk(sk); const struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); u32 delay; if (icsk->icsk_ca_state == TCP_CA_Open) { cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT; ca->delayed_ack += cnt; } /* Some calls are for duplicates without timetamps */ if (rtt_us < 0) return; /* Discard delay samples right after fast recovery */ if ((s32)(tcp_time_stamp - ca->epoch_start) < HZ) return; delay = usecs_to_jiffies(rtt_us) << 3; if (delay == 0) delay = 1; /* first time call or link delay decreases */ if (ca->delay_min == 0 || ca->delay_min > delay) ca->delay_min = delay; /* hystart triggers when cwnd is larger than some threshold */ //tp->snd_ssthresh初始值是一个很大的值0x7fffffff //当拥塞窗口增大到16的时候, //调用hystart_update来修改更新snd_ssthresh //hystart_update主要用于是否退出slow start if (hystart && tp->snd_cwnd <= tp->snd_ssthresh && tp->snd_cwnd >= hystart_low_window) hystart_update(sk, delay); } static struct tcp_congestion_ops cubictcp = { .init = bictcp_init, //调用ssthresh函数的地方有:tcp_fastretrans_alert(), tcp_enter_cwr(),tcp_enter_frto(), tcp_enter_loss() //看起来每次发生拥塞状态切换的时候,都会调整ssthresh。 //修改snd_ssthresh值的地方有bictcp_init,hystart_update以及上面列出的调用ssthresh函数处。 .ssthresh = bictcp_recalc_ssthresh, //发送方发出一个data包之后,接收方回复一个ack包,发送方收到这个ack包之后, //调用tcp_ack()->tcp_cong_avoid()->bictcp_cong_avoid()来更改拥塞窗口snd_cwnd大小. .cong_avoid = bictcp_cong_avoid, .set_state = bictcp_state, //调用undo_cwnd函数的地方有:tcp_undo_cwr()用来撤销之前误判导致的"缩小拥塞窗口" .undo_cwnd = bictcp_undo_cwnd, //调用ptts_acked函数的路径为:tcp_ack() -->tcp_clean_rtx_queue() .pkts_acked = bictcp_acked, .owner = THIS_MODULE, .name = "cubic", }; static int __init cubictcp_register(void) { //bictcp参数的个数不能过多 BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE); /* Precompute a bunch of the scaling factors that are used per-packet * based on SRTT of 100ms */ //beta_scale == 8*(1024 + 717) / 3 / (1024 -717 ),大约为15 beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta); //cube_rtt_scale == 41*10 = 410 cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */ /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3 * so K = cubic_root( (wmax-cwnd)*rtt/c ) * the unit of K is bictcp_HZ=2^10, not HZ * * c = bic_scale >> 10 * rtt = 100ms * * the following code has been designed and tested for * cwnd < 1 million packets * RTT < 100 seconds * HZ < 1,000,00 (corresponding to 10 nano-second) */ /* 1/c * 2^2*bictcp_HZ * srtt */ cube_factor = 1ull << (10+3*BICTCP_HZ); /* cube_factor == 2^40 */ /* divide by bic_scale and by constant Srtt (100ms) */ do_div(cube_factor, bic_scale * 10);//cube_factor == 2^40 / 410 return tcp_register_congestion_control(&cubictcp); } static void __exit cubictcp_unregister(void) { tcp_unregister_congestion_control(&cubictcp); } module_init(cubictcp_register); module_exit(cubictcp_unregister); MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("CUBIC TCP"); MODULE_VERSION("2.3");
标签:cnt,cubic,代码,tcp,sk,ca,cwnd,bictcp 来源: https://www.cnblogs.com/ztguang/p/15851046.html