其他分享
首页 > 其他分享> > PYTORCH 笔记 DILATE 代码解读

PYTORCH 笔记 DILATE 代码解读

作者:互联网

dilate 完整代码路径:vincent-leguen/DILATE: Code for our NeurIPS 2019 paper "Shape and Time Distortion Loss for Training Deep Time Series Forecasting Models" (github.com)

1 main 函数

1.1 导入库

import numpy as np
import torch
from data.synthetic_dataset import create_synthetic_dataset, SyntheticDataset
from models.seq2seq import EncoderRNN, DecoderRNN, Net_GRU
from loss.dilate_loss import dilate_loss
from torch.utils.data import DataLoader
import random
from tslearn.metrics import dtw, dtw_path
import matplotlib.pyplot as plt
import warnings
import warnings; warnings.simplefilter('ignore')

1.2 设置超参数

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
random.seed(0)

# parameters
batch_size = 100
N = 500
#训练集和测试集样本的数量(500个时间序列)
N_input = 20
# 输入的time step
N_output = 20
# 输出的time step
sigma = 0.01
# 噪声的标准差
gamma = 0.01
#soft-dtw时需要的平滑参数

1.3 导入数据集

num_workers那里,在windows操作环境下,只能设置为0,否则会报错

pytorch错误解决: BrokenPipeError: [Errno 32] Broken pipe_UQI-LIUWJ的博客-CSDN博客

# Load synthetic dataset
X_train_input,X_train_target,X_test_input,X_test_target,train_bkp,test_bkp = \
    create_synthetic_dataset(N,N_input,N_output,sigma)
##训练集的 input 训练集的output 测试集的input 测试集的output,训练集的陡降点,测试集的陡降点

dataset_train = SyntheticDataset(X_train_input,
                                 X_train_target,
                                 train_bkp)
dataset_test  = SyntheticDataset(X_test_input,
                                 X_test_target, 
                                 test_bkp)

trainloader = DataLoader(dataset_train, 
                         batch_size=batch_size,
                         shuffle=True, 
                         num_workers=0)
testloader  = DataLoader(dataset_test, 
                         batch_size=batch_size,
                         shuffle=False, 
                         num_workers=0)
#train和test的 Dataloader

 

数据集部分具体实现见 2: 

1.4 train_model 训练模型的方法


def train_model(net,
                loss_type,
                learning_rate,
                epochs=1000,
                gamma = 0.001,
                print_every=50,
                eval_every=50,
                verbose=1,
                Lambda=1,
                alpha=0.5):
    
    optimizer = torch.optim.Adam(net.parameters(),lr=learning_rate)
    criterion = torch.nn.MSELoss()
    #优化函数和默认损失函数
    
    for epoch in range(epochs): 
        for i, data in enumerate(trainloader, 0):
            inputs, target, _ = data
            #[batch_size,input_size,1]

            inputs = torch.tensor(inputs, dtype=torch.float32).to(device)
            target = torch.tensor(target, dtype=torch.float32).to(device)
            batch_size, N_output = target.shape[0:2]                     

            # forward + backward + optimize
            outputs = net(inputs)
            #outputs:[batch_size,output_size,1],学到的输出

            loss_mse,loss_shape,loss_temporal = torch.tensor(0),torch.tensor(0),torch.tensor(0)
            
            if (loss_type=='mse'):
                loss_mse = criterion(target,outputs)
                loss = loss_mse
                #如果是mse,那么直接设置loss值,进入接下来的数据更新即可
 
            if (loss_type=='dilate'):    
                loss, loss_shape, loss_temporal = dilate_loss(target,
                                                              outputs,
                                                              alpha,
                                                              gamma,
                                                              device)
                #如果是dilate,那么就是用dilate_loss(在loss.dilate_loss中定义)
                #见第四小节

            if (loss_type=='soft'):
                 _, loss,loss_temporal = dilate_loss(target,
                                                     outputs,
                                                     alpha,
                                                     gamma,
                                                     device)
                #如果是soft-dtw,把么就是用dilate_loss中的shape loss
                  
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            #pytorch 老三样
        
        if(verbose):
            if (epoch % print_every == 0):
                print('epoch ', epoch, ' loss ',loss.item(),' loss shape ',loss_shape.item(),' loss temporal ',loss_temporal.item())
                eval_model(net,testloader, gamma,verbose=1)
            #每print_every轮打印一次当前结果

1.5 eval_model 函数(评估模型当前的效果)

def eval_model(net,loader, gamma,verbose=1):   
    criterion = torch.nn.MSELoss()
    losses_mse = []
    losses_dtw = []
    losses_tdi = []   

    for i, data in enumerate(loader, 0):
        loss_mse, loss_dtw, loss_tdi = torch.tensor(0),torch.tensor(0),torch.tensor(0)
        # get the inputs
        inputs, target, breakpoints = data
        #输入值,目标预测值,突变点

        inputs = torch.tensor(inputs, dtype=torch.float32).to(device)
        target = torch.tensor(target, dtype=torch.float32).to(device)
        batch_size, N_output = target.shape[0:2]

        outputs = net(inputs)
        #预测的输出
         
        # MSE    
        loss_mse = criterion(target,outputs)  
        #以MSE作为loss function的情况下,损失函数是多少
  
        loss_dtw, loss_tdi = 0,0
        # DTW and TDI
        for k in range(batch_size):       
            #一个batch中的每对时间序列,进行比较
  
            target_k_cpu = target[k,:,0:1].view(-1).detach().cpu().numpy()
            output_k_cpu = outputs[k,:,0:1].view(-1).detach().cpu().numpy()

            path, sim = dtw_path(target_k_cpu, output_k_cpu)  
            #dtw的最佳path,dtw最优值            
 
            loss_dtw += sim
            #这个batch的总和dtw
                       
            Dist = 0
            for i,j in path:
                    Dist += (i-j)*(i-j)
                    #路径上每一个点离对角线的距离
            loss_tdi += Dist / (N_output*N_output)            
                        
        loss_dtw = loss_dtw /batch_size
        loss_tdi = loss_tdi / batch_size

        # print statistics
        losses_mse.append( loss_mse.item() )
        losses_dtw.append( loss_dtw )
        losses_tdi.append( loss_tdi )

    print( ' Eval mse= ', np.array(losses_mse).mean() ,' dtw= ',np.array(losses_dtw).mean() ,' tdi= ', np.array(losses_tdi).mean()) 

 1.6 基本seq2seq模型

详细见3

encoder = EncoderRNN(input_size=1,
                     hidden_size=128,
                     num_grulstm_layers=1,
                     batch_size=batch_size).to(device)
#一个GRU:输入维度1维,输出&隐藏层维度128维,单层GRU,batch_first


decoder = DecoderRNN(input_size=1,
                     hidden_size=128,
                     num_grulstm_layers=1,
                     fc_units=16,
                     output_size=1).to(device)
'''
一个GRU:输入维度1维,输出&隐藏层维度128维,单层GRU,batch_first
两个全连接:128-》16,16-》1
'''

1.7 基于不同的loss function,建立不同的network(并训练之)

注,每个不同的model,需要对应不同的encoder和decoder(也就是每一个network在train之前,都需要新建一堆encoder-decoder

1.7.1 基于Dilate

net_gru_dilate = Net_GRU(encoder,
                         decoder,
                         N_output,
                         device).to(device)

train_model(net_gru_dilate,
            loss_type='dilate',
            learning_rate=0.001,
            epochs=500,
            gamma=gamma,
            print_every=50,
            eval_every=50,
            verbose=1)

1.7.2 基于soft-dtw

重新新建一对encoder-decoder


encoder1 = EncoderRNN(input_size=1,
                     hidden_size=128,
                     num_grulstm_layers=1,
                     batch_size=batch_size).to(device)
#一个GRU:输入维度1维,输出&隐藏层维度128维,单层GRU,batch_first
decoder1 = DecoderRNN(input_size=1,
                     hidden_size=128,
                     num_grulstm_layers=1,
                     fc_units=16,
                     output_size=1).to(device)
'''
一个GRU:输入维度1维,输出&隐藏层维度128维,单层GRU,batch_first
两个全连接:128-》16,16-》1
'''

net_gru_soft = Net_GRU(encoder1,
                         decoder1,
                         N_output,
                         device).to(device)
train_model(net_gru_soft,
            loss_type='soft',
            learning_rate=0.001,
            epochs=500,
            gamma=gamma,
            print_every=50,
            eval_every=50,
            verbose=1)

1.7.3基于MSE

encoder2 = EncoderRNN(input_size=1,
                     hidden_size=128,
                     num_grulstm_layers=1,
                     batch_size=batch_size).to(device)
#一个GRU:输入维度1维,输出&隐藏层维度128维,单层GRU,batch_first
decoder2 = DecoderRNN(input_size=1,
                     hidden_size=128,
                     num_grulstm_layers=1,
                     fc_units=16,
                     output_size=1).to(device)
'''
一个GRU:输入维度1维,输出&隐藏层维度128维,单层GRU,batch_first
两个全连接:128-》16,16-》1
'''
net_gru_mse = Net_GRU(encoder2,
                      decoder2,
                      N_output,
                      device).to(device)
train_model(net_gru_mse,
            loss_type='mse',
            learning_rate=0.001,
            epochs=500,
            gamma=gamma,
            print_every=50,
            eval_every=50,
            verbose=1)

1.7.4 可视化结果

# Visualize results
gen_test = iter(testloader)
test_inputs, test_targets, breaks = next(gen_test)
#取一个batch的test data

test_inputs  = torch.tensor(test_inputs, dtype=torch.float32).to(device)
test_targets = torch.tensor(test_targets, dtype=torch.float32).to(device)
criterion = torch.nn.MSELoss()

nets = [net_gru_mse,net_gru_soft,net_gru_dilate]

for ind in range(1,51):
    plt.figure()
    plt.rcParams['figure.figsize'] = (30.0,10.0)  
    k = 1
    for net in nets:
        pred = net(test_inputs).to(device)

        input = test_inputs.detach().cpu().numpy()[ind,:,:]
        target = test_targets.detach().cpu().numpy()[ind,:,:]
        preds = pred.detach().cpu().numpy()[ind,:,:]

        plt.subplot(1,3,k)
        #一行三列的三个子图
        plt.plot(range(0,N_input) ,input,label='input',linewidth=3)

        plt.plot(range(N_input-1,N_input+N_output), np.concatenate([ input[N_input-1:N_input], target ]) ,label='target',linewidth=3)   

        plt.plot(range(N_input-1,N_input+N_output),  np.concatenate([ input[N_input-1:N_input], preds ])  ,label='prediction',linewidth=3)       
        plt.xticks(range(0,40,2))
        plt.legend()
        k = k+1

    plt.show()

2 data/synthetic_dataset.py

2.1 导入库

import numpy as np
import torch
import random
from torch.utils.data import Dataset, DataLoader

2.2  create_synthetic_dataset 生成人工合成数据


def create_synthetic_dataset(N, N_input,N_output,sigma):
    # N: number of samples in each split (train, test)
    # N_input: import of time steps in input series
    # N_output: import of time steps in output series
    # sigma: standard deviation of additional noise
    X = []
    breakpoints = []
    for k in range(2*N):
        serie = np.array([ sigma*random.random() for i in range(N_input+N_output)])
        # input 和output的值 N(0,0.01)

        i1 = random.randint(1,10)
        i2 = random.randint(10,18)
        #i1,i2 随机两个input 位置的脉冲信号峰值(产生突变)

        j1 = random.random()
        j2 = random.random()
        #两个脉冲峰值 N(0,1)

        interval = abs(i2-i1) + random.randint(-3,3)
        #输出陡降的位置

        serie[i1:i1+1] += j1
        serie[i2:i2+1] += j2
        #两个脉冲位置赋值

        serie[i2+interval:] += (j2-j1)
        #输出陡降的位置之后的位置,全部减去 j2和j1振幅的差距

        X.append(serie)
        breakpoints.append(i2+interval)
        #陡降点

    X = np.stack(X)
    breakpoints = np.array(breakpoints)

    return X[0:N,0:N_input], X[0:N, N_input:N_input+N_output], X[N:2*N,0:N_input], X[N:2*N, N_input:N_input+N_output],breakpoints[0:N], breakpoints[N:2*N]
#训练集的 input 训练集的output 测试集的input 测试集的output,训练集的陡降点,测试集的陡降点
#[N,N_input]

2.3 SyntheticDataset 为了pytorch的Dataloader 准备

pytorch笔记:Dataloader_UQI-LIUWJ的博客-CSDN博客_torch的dataloader

class SyntheticDataset(torch.utils.data.Dataset):
    def __init__(self, X_input, X_target, breakpoints):
        super(SyntheticDataset, self).__init__()  
        self.X_input = X_input
        self.X_target = X_target
        self.breakpoints = breakpoints
        
    def __len__(self):
        return (self.X_input).shape[0]

    def __getitem__(self, idx):
        return (self.X_input[idx,:,np.newaxis], self.X_target[idx,:,np.newaxis]  , self.breakpoints[idx])

3  seq2seq.py 模型部分

3.1 导入库

import torch
import torch.nn as nn
import torch.nn.functional as F

3.2 encoder 部分

pytorch笔记:torch.nn.GRU_UQI-LIUWJ的博客-CSDN博客

class EncoderRNN(torch.nn.Module):
    def __init__(self,input_size, hidden_size, num_grulstm_layers, batch_size):
        super(EncoderRNN, self).__init__()  
        self.hidden_size = hidden_size
        self.batch_size = batch_size
        self.num_grulstm_layers = num_grulstm_layers
        self.gru = nn.GRU(input_size=input_size,
                          hidden_size=hidden_size,
                          num_layers=num_grulstm_layers,
                          batch_first=True)

    def forward(self, input, hidden):
        # input [batch_size, length T, dimensionality d]      
        output, hidden = self.gru(input, hidden)      
        return output, hidden
    
    def init_hidden(self,device):
        #[num_layers*num_directions,batch,hidden_size]   
        return torch.zeros(self.num_grulstm_layers,
                           self.batch_size,
                           self.hidden_size,
                           device=device)
    #初始化h0

3.3 decoder部分

class DecoderRNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_grulstm_layers,fc_units, output_size):
        super(DecoderRNN, self).__init__()      
        self.gru = nn.GRU(input_size=input_size,
                          hidden_size=hidden_size,
                          num_layers=num_grulstm_layers,
                          batch_first=True)
        self.fc = nn.Linear(hidden_size, fc_units)
        self.out = nn.Linear(fc_units, output_size)         
        
    def forward(self, input, hidden):
        output, hidden = self.gru(input, hidden) 
        output = F.relu( self.fc(output) )
        output = self.out(output)      
        return output, hidden

3.4 seq2seq (encoder和decoder拼起来)

class Net_GRU(nn.Module):
    #一个encoder-decoder结构
    def __init__(self, encoder, decoder, target_length, device):
        super(Net_GRU, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.target_length = target_length
        self.device = device
        
    def forward(self, x):
        #x:[batch_size,input_size,1]
        input_length  = x.shape[1]
        #因为是batch_first,所以这里是sequence length

        encoder_hidden = self.encoder.init_hidden(self.device)
        #初始化h0 [1,batch_size,hidden_size]

        for ei in range(input_length):
            encoder_output, encoder_hidden = self.encoder(x[:,ei:ei+1,:]  ,
                                                          encoder_hidden)
        #读入输入的部分

        decoder_input = x[:,-1,:].unsqueeze(1)
        # first decoder input= last element of input sequence

        decoder_hidden = encoder_hidden
        #encoder最后一个hidden元素作为decoder第一个hidden元素
        
        outputs = torch.zeros([x.shape[0],
                               self.target_length,
                               x.shape[2]]  ).to(self.device)
        #outputs:[batch_size,output_size,1]

        for di in range(self.target_length):
            decoder_output, decoder_hidden = self.decoder(decoder_input,
                                                          decoder_hidden)
            decoder_input = decoder_output
            outputs[:,di:di+1,:] = decoder_output
        return outputs
        #outputs:[batch_size,output_size,1]

4 dilate_loss.py 计算dilate_loss

import torch
from . import soft_dtw
from . import path_soft_dtw 

def dilate_loss(outputs, targets, alpha, gamma, device):
	# outputs, targets: shape (batch_size, N_output, 1)

	batch_size, N_output = outputs.shape[0:2]

	loss_shape = 0
	softdtw_batch = soft_dtw.SoftDTWBatch.apply
    #我们自定义了SoftDTWBatch 这个torch.autograd 方法的前向和反向传播
    #使用apply,表示softdtw是其的一个别名

	D = torch.zeros((batch_size, N_output,N_output )).to(device)
	#(batch_size,N_output,N_output)

	for k in range(batch_size):
		Dk = soft_dtw.pairwise_distances(targets[k,:,:].view(-1,1),
										 outputs[k,:,:].view(-1,1))
#当前target序列和output序列任意两个点之间的欧几里得距离,拼成一个N_output * N_output的矩阵
		D[k:k+1,:,:] = Dk

	loss_shape = softdtw_batch(D,gamma)
	#这一个batch的平均shape loss

	path_dtw = path_soft_dtw.PathDTWBatch.apply
    #我们自定义了PathDTWBatch这个torch.autograd 方法的前向和反向传播
    #使用apply,表示path_dtw是其的一个别名
	path = path_dtw(D,gamma)
    #这一个batch 的平均 argminA*的平滑(dtw的一阶梯度)

	Omega =  soft_dtw.pairwise_distances(
		torch.range(1,N_output).view(N_output,1)).to(device)
	#||i-j||^2,也就是没有除以k^2的Ω矩阵


	loss_temporal =  torch.sum( path*Omega ) / (N_output*N_output)
	#计算TDI <A*,Ω> 除的部分是是Ω中的k^2

	loss = alpha*loss_shape+ (1-alpha)*loss_temporal
    #loss dilate

	return loss, loss_shape, loss_temporal

pytorch 笔记: 扩展torch.autograd_UQI-LIUWJ的博客-CSDN博客

5 soft_dtw.py 计算soft dtw (shape loss)

5.1 导入库

import numpy as np
import torch
from numba import jit
from torch.autograd import Function
#numba的作用是加速计算

5.2 pairwise_distances 两个序列任意两点之间的距离

def pairwise_distances(x, y=None):
    '''
    Input: x is a Nxd matrix
           y is an optional Mxd matirx
    Output: dist is a NxM matrix where dist[i,j] is the square norm between x[i,:] and y[j,:]
            if y is not given then use 'y=x'.
    i.e. dist[i,j] = ||x[i,:]-y[j,:]||^2
    '''
    '''
    x,y :(N_output,1)
    '''
    x_norm = (x**2).sum(1).view(-1, 1)
    #每一个N_output元素的各个维度 算出平方和
    #(N_output,1)
    if y is not None:
        y_t = torch.transpose(y, 0, 1)
        y_norm = (y**2).sum(1).view(1, -1)
    else:
        y_t = torch.transpose(x, 0, 1)
        y_norm = x_norm.view(1, -1)
    #else算的就是不除以k^2的Ω矩阵了
    
    dist = x_norm + y_norm - 2.0 * torch.mm(x, y_t)
    #||x-y||^2
    return torch.clamp(dist, 0.0, float('inf'))
    #[0,+inf]的范围
    #x序列和y序列任意两个点之间的欧几里得距离

5.3 compute_softdtw 计算soft-dtw

@jit(nopython = True)
def compute_softdtw(D, gamma):
  #D_[k,:,:]————当前target序列和output序列任意两个点之间的欧几里得距离

  N = D.shape[0]
  M = D.shape[1]
  #N,M 都是N_output

  R = np.zeros((N + 2, M + 2)) + 1e8
  #给N*M的R矩阵周围围上一圈,防止下标越界

  R[0, 0] = 0
  for j in range(1, M + 1):
    for i in range(1, N + 1):
      r0 = -R[i - 1, j - 1] / gamma
      r1 = -R[i - 1, j] / gamma
      r2 = -R[i, j - 1] / gamma

      rmax = max(max(r0, r1), r2)
      rsum = np.exp(r0 - rmax) + np.exp(r1 - rmax) + np.exp(r2 - rmax)
      softmin = - gamma * (np.log(rsum) + rmax)
      #rmax的出现是为了防止exp之后,数值过大,导致上溢出

      R[i, j] = D[i - 1, j - 1] + softmin
      #由于R周围围了一圈,所以R[i,j]对应的是D[i-1,j-1]
      #即soft-dtw的递推公式
  return R

 

5.4 compute_softdtw_backward 使用动态规划的soft-dtw反向传播

@jit(nopython = True)
def compute_softdtw_backward(D_, R, gamma):
  #这里其实也是在计算dtw,只不过实现方式和path_soft_dtw里面的略有不同
  #D_——当前target序列和output序列任意两个点之间的欧几里得距离

  N = D_.shape[0]
  M = D_.shape[1]
  #(N_output,N_output)

  D = np.zeros((N + 2, M + 2))
  E = np.zeros((N + 2, M + 2))
  D[1:N + 1, 1:M + 1] = D_
  E[-1, -1] = 1
  R[:, -1] = -1e8
  R[-1, :] = -1e8
  R[-1, -1] = R[-2, -2]

  for j in range(M, 0, -1):
    for i in range(N, 0, -1):
      a0 = (R[i + 1, j] - R[i, j] - D[i + 1, j]) / gamma
      b0 = (R[i, j + 1] - R[i, j] - D[i, j + 1]) / gamma
      c0 = (R[i + 1, j + 1] - R[i, j] - D[i + 1, j + 1]) / gamma
      #γ log d (r_i+1,j)/d (r_i,j)=(r_i+1,j)-(r_i,j)-(δ_i+1,j)

      a = np.exp(a0)
      b = np.exp(b0)
      c = np.exp(c0)

      E[i, j] = E[i + 1, j] * a + E[i, j + 1] * b + E[i + 1, j + 1] * c
   
  return E[1:N + 1, 1:M + 1]
 

 

 5.5 SoftDTWBatch——自定义的、扩展torch.autograd的损失函数(L-shape)

class SoftDTWBatch(Function):
    @staticmethod
    def forward(ctx, D, gamma = 1.0): 
        # D.shape: [batch_size, N , N]
        #D_——当前target序列和output序列任意两个点之间的欧几里得距离

        dev = D.device
        batch_size,N,N = D.shape
        #(batch_size,N_output,N_output)

        gamma = torch.FloatTensor([gamma]).to(dev)
        D_ = D.detach().cpu().numpy()
        g_ = gamma.item()
        #soft-dtw需要的γ

        total_loss = 0

        R = torch.zeros((batch_size, N+2 ,N+2)).to(dev)
        #(batch_size,N_output+2,N_output+2)

        for k in range(0, batch_size):
            # 一个batch中每对sequence都进行比较
            Rk = torch.FloatTensor(compute_softdtw(D_[k,:,:], g_)).to(dev)
            '''
            D_[k,:,:]
            #当前target序列和output序列任意两个点之间的欧几里得距离
            '''
            R[k:k+1,:,:] = Rk
            #R——softdtw的结果矩阵

            total_loss = total_loss + Rk[-2,-2]

        ctx.save_for_backward(D, R, gamma)

        return total_loss / batch_size
    #这一个batch的平均shape loss
  
    @staticmethod
    def backward(ctx, grad_output):
        dev = grad_output.device
        D, R, gamma = ctx.saved_tensors
        batch_size,N,N = D.shape
        D_ = D.detach().cpu().numpy()
        R_ = R.detach().cpu().numpy()
        g_ = gamma.item()

        E = torch.zeros((batch_size, N ,N)).to(dev) 
        for k in range(batch_size):         
            Ek = torch.FloatTensor(compute_softdtw_backward(D_[k,:,:], R_[k,:,:], g_)).to(dev)
            #Ek就是之前所说的E矩阵
            E[k:k+1,:,:] = Ek

        return grad_output * E, None
        #D的loss

6 path_soft_dtw 计算temporal loss

6.1 导入库

import numpy as np
import torch
from torch.autograd import Function
from numba import jit

6.2 辅助函数

6.2.1 my_max

@jit(nopython = True)
def my_max(x, gamma):
    # use the log-sum-exp trick
    max_x = np.max(x)
    exp_x = np.exp((x - max_x) / gamma)
    Z = np.sum(exp_x)
    return gamma * np.log(Z) + max_x, exp_x / Z
    #相当于是max(x),(e^x)/(Σe^x)

6.2.2 my_min

@jit(nopython = True)
def my_min(x,gamma) :
    min_x, argmax_x = my_max(-x, gamma)
    return - min_x, argmax_x
    #相当于是min(x),(e^x)/(Σe^x)

6.2.3  my_max_hessian_product & my_min_hessian_product

二阶导的部分我其实没太搞明白

@jit(nopython = True)
def my_max_hessian_product(p, z, gamma):
    return  ( p * z - p * np.sum(p * z) ) /gamma

@jit(nopython = True)
def my_min_hessian_product(p, z, gamma):
    return - my_max_hessian_product(p, z, gamma)

6.2.4 dtw_grad

@jit(nopython = True)
def dtw_grad(theta, gamma):
    #theta——当前target序列和output序列任意两个点之间的欧几里得距离

    m = theta.shape[0]
    n = theta.shape[1]
    #(N_output,N_output)
    V = np.zeros((m + 1, n + 1))
    V[:, 0] = 1e10
    V[0, :] = 1e10
    V[0, 0] = 0

    Q = np.zeros((m + 2, n + 2, 3))

    for i in range(1, m + 1):
        for j in range(1, n + 1):
            # theta is indexed starting from 0.
            v, Q[i, j] = my_min(np.array([V[i, j - 1],
                                                V[i - 1, j - 1],
                                                V[i - 1, j]]) , gamma)
            #min(V[i, j - 1],V[i - 1, j - 1],V[i - 1, j]])
            '''
            第二项相当于 
            e^{-r i,j-1}/(e^{-r i,j-1}+e^{-r i-1,j-1}+e^{-r i-1,j})=d r i,j/d r i,j-1
            e^{-r i-1,j-1}/(e^{-r i,j-1}+e^{-r i-1,j-1}+e^{-r i-1,j})=d r i,j/d r i-1,j-1
            e^{-r i-1,j}/(e^{-r i,j-1}+e^{-r i-1,j-1}+e^{-r i-1,j})=d r i,j/d r i-1,j
            '''

            V[i, j] = theta[i - 1, j - 1] + v
            #soft-dtw结果矩阵

    E = np.zeros((m + 2, n + 2))
    #也是外面围了一圈
    E[m + 1, :] = 0
    E[:, n + 1] = 0
    E[m + 1, n + 1] = 1
    Q[m + 1, n + 1] = 1

    for i in range(m,0,-1):
        for j in range(n,0,-1):
            E[i, j] = Q[i, j + 1, 0] * E[i, j + 1] + \
                      Q[i + 1, j + 1, 1] * E[i + 1, j + 1] + \
                      Q[i + 1, j, 2] * E[i + 1, j]
    #e ij=d (r_i,j+1)/d (r_i,j) * e_i,j+1+\
    #        d (r_i+1,j+1)/d (r_i,j) * e_i+1,j+1+\
    #        d (r_i+1,j)/ d(r_i,j) * e_i+1,j
    #soft-dtw backward DTW的一阶导

    return V[m, n], E[1:m + 1, 1:n + 1], Q, E
    '''
    V:soft-dtw 结果 
    E: dtw一阶导  
    Q:每一个元素都是r_i,j 相对与影响他前向传播的r的偏导(顺时针顺序)
    '''

 

 6.2.5 dtw_hessian_prod  dtw一阶梯度的梯度(散度)

@jit(nopython = True)
def dtw_hessian_prod(theta, Z, Q, E, gamma):
    #theta——当前target序列和output序列任意两个点之间的欧几里得距离
    #Z-#input的梯度
    #Q_cpu_k:每一个元素都是r_i,j 相对与影响他前向传播的r的偏导(顺时针顺序)
    #E_cpu_k: dtw一阶导(外面围了一圈0)
    m = Z.shape[0]
    n = Z.shape[1]

    V_dot = np.zeros((m + 1, n + 1))
    V_dot[0, 0] = 0

    Q_dot = np.zeros((m + 2, n + 2, 3))
    for i in range(1, m + 1):
        for j in range(1, n + 1):
            # theta is indexed starting from 0.
            V_dot[i, j] = Z[i - 1, j - 1] + \
                          Q[i, j, 0] * V_dot[i, j - 1] + \
                          Q[i, j, 1] * V_dot[i - 1, j - 1] + \
                          Q[i, j, 2] * V_dot[i - 1, j]

            v = np.array([V_dot[i, j - 1],
                          V_dot[i - 1, j - 1],
                          V_dot[i - 1, j]])
            Q_dot[i, j] = my_min_hessian_product(Q[i, j], v, gamma)
    E_dot = np.zeros((m + 2, n + 2))

    for j in range(n,0,-1):
        for i in range(m,0,-1):
            E_dot[i, j] = Q_dot[i, j + 1, 0] * E[i, j + 1] + \
                          Q[i, j + 1, 0] * E_dot[i, j + 1] + \
                          Q_dot[i + 1, j + 1, 1] * E[i + 1, j + 1] + \
                          Q[i + 1, j + 1, 1] * E_dot[i + 1, j + 1] + \
                          Q_dot[i + 1, j, 2] * E[i + 1, j] + \
                          Q[i + 1, j, 2] * E_dot[i + 1, j]
        #二阶何塞矩阵的链式法则(带dot的就是二阶导)
    return V_dot[m, n], E_dot[1:m + 1, 1:n + 1]

6.2.6 PathDTWBatch——返回argminA*

class PathDTWBatch(Function):
    @staticmethod
    def forward(ctx, D, gamma): # D.shape: [batch_size, N , N]
        #D——当前target序列和output序列任意两个点之间的欧几里得距离

        batch_size,N,N = D.shape
        #(batch_size,N_output,N_output)

        device = D.device
        D_cpu = D.detach().cpu().numpy()
        gamma_gpu = torch.FloatTensor([gamma]).to(device)
        
        grad_gpu = torch.zeros((batch_size, N ,N)).to(device)
        Q_gpu = torch.zeros((batch_size, N+2 ,N+2,3)).to(device)
        E_gpu = torch.zeros((batch_size, N+2 ,N+2)).to(device)  
        
        for k in range(0,batch_size): # loop over all D in the batch    
            _, grad_cpu_k, Q_cpu_k, E_cpu_k = dtw_grad(D_cpu[k,:,:], gamma)
            '''
    V:soft-dtw 结果 
    grad_cpu_k: dtw一阶导   [1:m + 1, 1:n + 1] argmin的平滑近似
    Q_cpu_k:每一个元素都是r_i,j 相对与影响他前向传播的r的偏导(顺时针顺序)
    E_cpu_k: dtw一阶导(外面围了一圈0)  
            '''

            grad_gpu[k,:,:] = torch.FloatTensor(grad_cpu_k).to(device)
            Q_gpu[k,:,:,:] = torch.FloatTensor(Q_cpu_k).to(device)
            E_gpu[k,:,:] = torch.FloatTensor(E_cpu_k).to(device)

        ctx.save_for_backward(grad_gpu,D, Q_gpu ,E_gpu, gamma_gpu) 

        return torch.mean(grad_gpu, dim=0)
        #把一个batch的平均掉
        #argminA*    
        
    @staticmethod
    def backward(ctx, grad_output):
        device = grad_output.device
        grad_gpu, D_gpu, Q_gpu, E_gpu, gamma = ctx.saved_tensors

        D_cpu = D_gpu.detach().cpu().numpy()
        #D——当前target序列和output序列任意两个点之间的欧几里得距离
        Q_cpu = Q_gpu.detach().cpu().numpy()
        #Q_cpu_k:每一个元素都是r_i,j 相对与影响他前向传播的r的偏导(顺时针顺序)
        E_cpu = E_gpu.detach().cpu().numpy()
        #E_cpu_k: dtw一阶导(外面围了一圈0)
        gamma = gamma.detach().cpu().numpy()[0]
        Z = grad_output.detach().cpu().numpy()
        #input的梯度
        
        batch_size,N,N = D_cpu.shape
        Hessian = torch.zeros((batch_size, N ,N)).to(device)
        for k in range(0,batch_size):
            _, hess_k = dtw_hessian_prod(D_cpu[k,:,:],
                                         Z,
                                         Q_cpu[k,:,:,:],
                                         E_cpu[k,:,:],
                                         gamma)
            Hessian[k:k+1,:,:] = torch.FloatTensor(hess_k).to(device)

        return  Hessian, None
        

标签:loss,DILATE,torch,batch,笔记,PYTORCH,input,output,size
来源: https://blog.csdn.net/qq_40206371/article/details/122714084