1143. Longest Common Subsequence
作者:互联网
找两组数据的最大数值,可以自顶向下写个递归,把可能重复的部分记录下来,用一个二维数组来存储:
class Solution { private Integer[][] dp; private int m, n; public int longestCommonSubsequence(String text1, String text2) { m = text1.length(); n = text2.length(); dp = new Integer[m][n]; return helper(text1, text2, 0, 0); } private int helper(String text1, String text2, int i, int j) { if (i == m || j == n) return 0; if (dp[i][j] != null) return dp[i][j]; if (text1.charAt(i) == text2.charAt(j)) return dp[i][j] = 1 + helper(text1, text2, i + 1, j + 1); else return dp[i][j] = Math.max( helper(text1, text2, i + 1, j), helper(text1, text2, i, j + 1) ); } }
上面的自顶向下算法可以演变成下面的自底向上的算法,而且抛弃递归:
class Solution { public int longestCommonSubsequence(String text1, String text2) { int m = text1.length(), n = text2.length(); int[][] dp = new int[m+1][n+1]; for(int i=0;i<m;i++){ for ( int j=0;j<n;j++){ if(text1.charAt(i)==text2.charAt(j)){ dp[i+1][j+1]=dp[i][j]+1; }else{ dp[i+1][j+1]=Math.max(dp[i][j+1], dp[i+1][j]); } } } return dp[m][n]; } }
标签:1143,String,helper,int,text2,Subsequence,text1,Longest,dp 来源: https://www.cnblogs.com/feiflytech/p/15841611.html